’ gt

PV-WAVE 7.5°

HeLPING CuSTOMERS SOLVE COMPLEX PROBLEMS —————

Visual Numerics, Inc.

Visual Numerics, Inc. Visual Numerics, Inc. (France) S.A.R.L. Visual Numerics International, Ltd.

2500 Wilcrest Drive Tour Europe Suite 1

Suite 200 33 place des Corolles Centennial Court

Houston, Texas 77042-2579 Cedex 07 East Hampstead Road

United States of America 92049 PARIS LA DEFENSE Bracknell, Berkshire

713-784-3131 FRANCE RG 121YQ

800-222-4675 +33-1-46-93-94-20 UNITED KINGDOM

(FAX) 713-781-9260 (FAX) +33-1-46-93-94-39 +01-344-458-700

http://www.vni.com e-mail: info@vni-paris.fr (FAX) +01-344-458-748

e-mail: info@boulder.vni.com e-mail: info@vniuk.co.uk

Visual Numerics, Inc. Visual Numerics International GmbH Visual Numerics Japan, Inc.

7/F, #510, Sect. 5 Zettachring 10 Gobancho Hikari Building, 4th Floor

Chung Hsiao E. Rd. D-70567 Stuttgart 14 Gobancho

Taipei, Taiwan 110 ROC GERMANY Chiyoda-Ku, Tokyo, 102

+886-2-727-2255 +49-711-13287-0 JAPAN

(FAX) +886-2-727-6798 (FAX) +49-711-13287-99 +81-3-5211-7760

e-mail: info@vni.com.tw e-mail: info@visual-numerics.de (FAX) +81-3-5211-7769
e-mail: vda-sprt@vnij.co.jp

Visual Numerics S.A. de C.V. Visual Numerics, Inc., Korea

Cerrada de Berna 3, Tercer Piso Rm. 801, Hanshin Bldg.

Col. Juarez 136-1, Mapo-dong, Mapo-gu

Mexico, D.F. C.P. 06600 Seoul 121-050

Mexico Korea

© 1990-2001 by Visual Numerics, Inc. An unpublished work. All rights reserved. Printed in the USA.
Information contained in this documentation is subject to change without notice.

IMSL, PV- WAVE, Visual Numerics and PV-WAVE Advantage are either trademarks or registered trademarks of Visual Numerics, Inc.
in the United States and other countries.

The following are trademarks or registered trademarks of their respective owners: Microsoft, Windows, Windows 95, Windows NT, For-
tran PowerStation, Excel, Microsoft Access, FoxPro, Visual C, Visual C++ — Microsoft Corporation; Motif — The Open Systems Foun-
dation, Inc.; PostScript — Adobe Systems, Inc.; UNIX — X/Open Company, Limited; X Window System, X11 — Massachusetts
Institute of Technology; RISC System/6000 and IBM — International Business Machines Corporation; Java, Sun — Sun Microsystems,
Inc.; HPGL and PCL — Hewlett Packard Corporation; DEC, VAX, VMS, OpenVMS — Compag Computer Corporation; Tektronix 4510
Rasterizer — Tektronix, Inc.; IRIX, TIFF — Silicon Graphics, Inc.; ORACLE — Oracle Corporation; SPARCstation — SPARC Interna-
tional, licensed exclusively to Sun Microsystems, Inc.; SYBASE — Sybase, Inc.; HyperHelp — Bristol Technology, Inc.; dBase — Bor-
land International, Inc.; MIFF — E.I. du Pont de Nemours and Company; JPEG — Independent JPEG Group; PNG — Aladdin
Enterprises; XWD — X Consortium. Other product names and companies mentioned herein may be the trademarks of their respective
owners.

IMPORTANT NOTICE: Use of this document is subject to the terms and conditions of a Visual Numerics Software License
Agreement, including, without limitation, the Limited Warranty and Limitation of Liability. If you do not accept the terms of the
license agreement, you may not use this documentation and should promptly return the product for a full refund. Do not make illegal
copies of this documentation. No part of this documentation may be stored in a retrieval system, reproduced or transmitted in any form
or by any means without the express written consent of Visual Numerics, unless expressly permitted by applicable law.

Table of Contents

Preface vii

What’s in this Manual vii
Conventions Used in this Manual ix

Technical Support x

Chapter 1: Learning PV-WAVE 1

Using the Tutorial 1

Using Online Help 1

Using Manuals Online 3

The Printed Documentation Set 4
Using the Gallery 6

Using the Demo Files 8

Chapter 2: Getting Started: UNIX and OpenVMS
Starting PV-WAVE 9
Stopping PV=-WAVE 11
Entering Commands at the Command Line 13
Using Command Recall 16
Getting Information about the Current Session 16
Saving and Restoring Sessions 16

Printing Your Work 18

Chapter 3: Getting Started: Windows 23
Starting PV-WAVE 23
Summary of PV-WAVE Startup Commands 24
Stopping PV=-WAVE 25

Executing a Command (Batch) File at Startup 27
DDE Runtime Mode — wavedde 27

Windows Used by PV-WAVE 28

Entering Commands at the Command Line 30
Function Keys 34

Getting Information about the Current Session 35
Saving and Restoring PV-WAVE Sessions 35
Printing Your Work 37

Using the Clipboard 40

Chapter 4: Displaying 2D Data 41
Summary of 2D Plotting and General Graphics Routines 41
Customizing Plots with Keyword Parameters 42
Three Graphics Coordinate Systems 43
Drawing X Versus Y Plots 45
Getting Input from the Cursor 78

Chapter 5: Displaying 3D Data 81
Differences Between CONTOUR and CONTOUR2 82
Drawing Contour Plots with the CONTOUR Procedure 82
Drawing a Surface 96
Drawing Three-dimensional Graphics 99
3D Transformations with 2D Procedures 110

Drawing Shaded Surfaces 115

Chapter 6: Displaying Images 119
What is an Image? 119
Image Display Routines: TV and TVSCL 120

Image Magnification and Reduction 123

PV-WAVE User’s Guide

Retrieving Information from Images 124
Using Color with Images 125

Gray Level Transformations 132

Image Smoothing 138

Image Sharpening 139

Frequency Domain Techniques 141
Geometric Transformations 146

Mathematical Morphology 151

Chapter 7: Rendering Techniques
Hardware Rendering 153
Software Rendering 163
Demonstration Programs 164

The Basic Rendering Process 171

Importing and Generating Data for Rendering

Manipulating and Converting Data 176
Setting Up Data for Viewing 179

Rendering with Standard Techniques 179

Ray-tracing 180
Displaying Rendered Images 200

Chapter 8: Working with Date/Time Data

Introduction to Date/Time Data 201
The Date/Time Structure 204
Reading in Your Date/Time Data 206

153

Converting Your Data into Date/Time Data 207

Generating Date/Time Data 211
Manipulating Date/Time Data 212
Creating Plots with Date/Time Data 217

172

201

Writing Date/Time Data to a File 228

Miscellaneous Date/Time Utility Functions 230

Chapter 9: Creating and Querying Tables 235
What are the Table Functions? 235
Table Functions and Structured Query Language (SQL) 236
A Quick Overview of the Table Functions 236
Creating a Table 238
Querying a Table 241
Using Date/Time Data in Tables 251
Formatting and Printing Tables 254
Plotting Table Data 255
Tables and Structures 256
Returning Indices of a Subsetted Table 257
Other Methods of Subsetting and Sorting Variables 258

Chapter 10: Using Fonts 259
Software vs. Hardware Fonts: How to Choose 259
Using Software Fonts 261
Using Hardware Fonts 264
Text Formatting Examples 267

Chapter 11: Using Color in Graphics Windows 273
Understanding Color Systems 273
Using Color to Enhance Visual Data Analysis 277
Device-specific Methods for Using Color 291

Summary of Color Table Procedures 292

Chapter 12: Mapping with PV-WAVE 295

iv PV-WAVE User’s Guide

Introduction 296

Using Map Projections and Datasets 297
Creating and Customizing Maps 300

How to Optimize Your Mapping Application 311
Accessing Other Map Datasets 315

Defining Your Own Projections 318

Creating Interactive Map Applications 319

Chapter 13: PV-WAVE on the World Wide Web 321

Standard Library Web-Enabling Routines 321
PV-WAVE as a Helper Application 322
Using PV-WAVE Remotely with CGl 323

User’s Guide Index 1

Vi

PV-WAVE User’s Guide

Preface

Welcometo PV=WAVE! PV=WAVE isacomprehensive software environment that
integrates state-of-the-art graphical and numerical analysis techniquesinto a
system that is easy to use, easy to extend, easy to apply, and easy to learn.
PV=WAV E gives you the tool s you heed to find solutionsto, and build applications
for, complex technical problems.

Thismanual explains how to use PV=WAV E to perform many kinds of visual data
analysis (VDA) — 2D and 3D plotting, image processing, volume rendering, and
mapping techniques are discussed. In addition, this manual discusses how to
manage your PV=WAV E session, use color to enhance displayed data, create tables
of data, and incorporate date/time datainto your plots.

What’s in this Manual

This manual covers the following topics:

e Chapter 1, Learning PV-WAVE — Provides an overview of the topics dis-
cussed in this manual.

e Chapter 2, Getting Started: UNIX and OpenVM S — Discusses some of
PV=WAVE's basic operations under UNIX and OpenVMS, such as starting
and stopping the software, using the online Help and documentation systems,
journaling, and saving and restoring sessions.

» Chapter 3, Getting Started: Windows — Discusses some of PV=WAVE's
basic operations under Windows.

» Chapter 4, Displaying 2D Data — Coversthe basics of X versus'Y plotting.

Vii

Chapter 5, Displaying 3D Data— Describesthebasics of contour and surface
plotting.

Chapter 6, Displaying | mages — Describes routines used for displaying
images and image processing.

Chapter 7, Rendering Techniques — Describes the routines and techniques
used to render volumes.

Chapter 8, Working with Date/Time Data — Explains how to create plots
with a Date/Time axis.

Chapter 9, Creating and Querying Tables — Discusses how to create and
subset tables using SQL -like functions.

Chapter 10, Using Fonts — Discusses how to use and format software, or
vector-drawn, fonts. This chapter also discusses the difference between soft-
ware and hardware fonts and how to choose between them.

Chapter 11, Using Color in Graphics Windows — Discusses color systems
and introduces the routines that control color tables and plot colors.

Chapter 12, Mapping with PV-WAVE — Discusses mapping procedures and
optimization.

Chapter 13, PV-WAVE on the World Wide Web — Describes features that
allow you to process and present data across the Internet or your intranet.

User’s Guide Index — A subject index with hypertext links to information in
this manual.

viii

Preface

PV-WAVE User’s Guide

Conventions Used in this Manual

You will find the following conventions used throughout this manual:
* Codeexamplesappear in this typeface. For example:
PLOT, temp, s02, Title = 'Air Quality’

e Code comments are shown in this typeface, immediately below the commands
they describe. For example:

PLOT, temp, s02, Title = 'Air Quality’

; This command plots air temperature data vs. sulphur
; dioxide concentration.

e Variables are shown in lowercase italics (myvar), function and procedure
names are shown in uppercase (XYOUTS), keywords are shown in mixed case
italic (XTitle), and system variables are shown in regular mixed casetype (! Ver-
sion). For better readability, all GUI devel opment routines are shown in mixed
case (WwMainMenu).

A $ attheend of aline of PV=WAVE code indicates that the current statement
is continued on thefollowing line. By convention, use of the continuation char-
acter ($) in this document reflectsiits syntactically correct usein PV=WAVE.
Thismeans, for instance, that strings are never split onto two lines without the
addition of the string concatenation operator (+). For example, the following
lines would produce an error if entered literally in PV=WAVE.

WAVE> PLOT, x, y, Title = ’'Average $
Air Temperatures by Two-Hour Periods’

; Note that the string is split onto two lines; an error
; message is displayed if you enter a string this way.

The correct way to enter these linesis:

WAVE> PLOT, x, y, Title = ’'Average ' + $
"Alr Temperatures by Two-Hour Periods’

; This is the correct way to split a string onto two
; command lines.

* Reserved words, such as FOR, IF, CASE, are always shown in uppercase.

Conventions Used in this Manual iX

Technical Support

If you have problems installing, unlocking, or running your software, contact
Visua Numerics Technical Support by calling:

Office Location Phone Number
Corporate Headqguarters

Houston, Texas 713-784-3131
Boulder, Colorado 303-939-8920
France +33-1-46-93-94-20
Germany +49-711-13287-0
Japan +81-3-5211-7760
Korea +82-2-3273-2633
Mexico +52-5-514-9730
Taiwan +886-2-727-2255
United Kingdom +44-1-344-458-700

Users outside the U.S., France, Germany, Japan, Korea, Mexico, Taiwan, and the
U.K. can contact their local agents.

Please be prepared to provide the following information when you call for consul-
tation during Visual Numerics business hours:

* Your license number, asix-digit number that can be found on the packing slip
accompanying thisorder. (If you are eval uating the software, just mention that
you are from an evaluation site.)

* The name and version number of the product. For example, PV=WAVE 7.0.

* Thetype of system on which the software is being run. For example, SPARC-
station, IBM RS/6000, HP 9000 Series 700.

* Theoperating system and version number. For example, HP-UX 10.2 or IRIX
6.5.

» A detailed description of the problem.

X Preface PV-WAVE User’s Guide

FAX and E-mail Inquiries

Contact Visual Numerics Technical Support staff by sending a FAX to:

Office Location

Corporate Headquarters
Boulder, Colorado
France

Germany

Japan

Korea

Mexico

Taiwan

United Kingdom

FAX Number
713-781-9260
303-245-5301
+33-1-46-93-94-39
+49-711-13287-99
+81-3-5211-7769
+82-2-3273-2634
+52-5-514-4873
+886-2-727-6798
+44-1-344-458-748

or by sending E-mail to:

Office L ocation
Boulder, Colorado
France

Germany

Japan

Korea

Taiwan

United Kingdom

E-mail Address
support@boulder.vni.com
support@vni-paris.fr
support@visual-numerics.de
vda-sprt@vnij.co.jp
support@vni.co.kr
support@vni.com. tw

support@vniuk.co.uk

Technical Support Xi

Electronic Services

Service Address
General e-mail info@boulder.vni.com
Support e-mail support@boulder.vni.com
World Wide Web http://www.vni.com
Anonymous FTP ftp.boulder.vni.com
FTP Using URL ftp://ftp.boulder.vni.com/VNI/
PV=WAVE
Mailing List: Majordomo@boulder.vni.com
To subscribe subscribe pv-wave YourEmailAddress
include:

To post messages pv-wave@boulder.vni.com

Xil Preface PV-WAVE User’s Guide

Learning PV-WAVE

This chapter discusses some of the PV=WAVE |earning aidsthat are available. Use
this chapter to find the best place for you to begin exploring PV=WAVE.

Using the Tutorial

The PV=-WAVE Tutorial helpsyou begin using PV=WAV E Foundation and the com-
panion technologies — PV=WAVE Visual Exploration, PV-WAVE:IMSL
Mathematics, PV-WAVE:IMSL Statistics— aswell as some of the specialized
optional toolkits. The logical approach used in the tutorial getsyou started in a
focused and productive way, so that you can have immediate results.

We recommend that new users start with the PV=WAVE Tutorial.

Using Online Help

PV=WAVE has an easy-to-use online help facility that allows you to find and dis-
play information on many PV=WAVE features.

Using Online Help on UNIX and OpenVMS

Help from the Command Line

At the WAVE > prompt, enter:

WAVE> HELP

This command starts PV=WAV E’s online help system with the main Help Table of
Contents displayed by default.

You can also display help on a particular PV=WAV E command. For example, for
help on the REBIN command, you can type:

WAVE> HELP, ’'REBIN’

VDA Tools Help

Context sensitive help is provided with all VDA Tools (Visual Data Analysis).
Each VDA Tool has a menu bar with a Help menu. The Help menu contains the
following functions:

* On Window — Displays the Help viewer with the Table of Contents for
information on the VDA Tool.

* On PV-WAVE — Brings up the Table of Contentsfor PV=WAVE online help.
Thisisthe full PV=WAVE reference.

* On Help — Displays detailed information on how to use the Help system.

e On Version — Displays the PV=WAVE version number and information on
electronic services.

Helpisalso availablefrom VDA Tool dialog boxes. Most dialog boxes have aHelp
button in the lower right-hand corner. When you click this button, the Hyperhelp
viewer appears displaying information on the dialog box.

Printing from Online Help

To printinformation from the help system, select File=>Print from the online help
viewer menu. This sends output directly to the default printer.

To configure the print driver (e.g., to specify aprinter name, output filename, page
orientation, scale, or number of copies), select File=>Printer Setup from the
online help viewer menu.

For detailed instructions on how to use the print functions and how to set up the
print driver, select Help=>How to Use Help from the online help viewer, and then
select theHow To help topics: Print aHelp Topic, I nstall aNew Printer, or Con-
figureaPrinter.

NOTE |If you select the File option in the Printer Setup dialog box, the default
locationinwhich the help systemlooksfor filesis SHOME, and the default filename
isxprinter.eps. To specify adifferent path and filename, enter themin theFile
Name text field.

If you select the Printer option in the Printer Setup dial og box, you must have write
accessto thefile SHHHOME /xprinter/Xpdefaults and you must install a
printer for your site. The Hyperhelp help file describes how to install a printer.

PV-WAVE User’s Guide

Using Online Help on Windows

Help from the Command Line
At the WAVE> prompt, enter:
WAVE> HELP

This command starts PV=WAV E’s online documentation system with the main
Help Table of Contents displayed by default.

You can also display help on a particular PV=WAV E command. For example, for
help on the REBIN command, you can type:

WAVE> HELP, 'REBIN’

Help from the Program Manager/Start Menu

You can start themain Help Table of Contents by clicking the PV=WAVE Helpicon
in the PV=WAV E program group, or by selecting PV=WAVE Help from the
Start=>Programs=>PV=WAV E menu on Windows 95.

VDA Tools Help

Context sensitive help is provided with all VDA Tools (Visual Data Analysis).
Each VDA Tool has a menu bar with a Help menu. The Help menu contains the
following functions:

e OnWindow — Displaysthe Help viewer with the Table of Contents for infor-
mation on the VDA Tool.

* Index — Brings up the Table of Contents for PV=WAVE online help. Thisis
the full PV=WAVE reference.

* On Help — Displays detailed information on how to use the Help system.

e On Version — Displays the PV=WAVE version number and information on
electronic services.

Help isalso available from VDA Tool dialog boxes. Most dialog boxes have aHelp
button in the lower right-hand corner. When you click this button, the online help
viewer appears displaying information on the dialog box.

Using Manuals Online

A complete set of PV=WAVE manualsis available online as an optional
installation.

Using Manuals Online 3

If you have the online manual sinstalled on your system, you can start aninteractive
table of contents window by entering the following command at the PV=-WAVE
prompt:

WAVE> HELP, /Documentation

Or, from the UNIX system prompt, type wavedoc.

On Windows, you may aso double click on the Manuals Online icon or select the
Start=>Programs=>PV-WAV E=>Manuals Online menu item.

The online manuals include a main table of contents from which you can display
information from any PV=WAV E manual. Hypertext tables of contents are avail-
able for all books and indexes for most. You can copy and paste examples direcly
into PV=WAVE from the manuals, or you can print al or part of any manual.

For more detailed information about the online manuals, see the “Introduction to
Manuals Online’ — online.

The Printed Documentation Set

The Standard PV-WAVE Documentation Set

PV-WAVE Tutorial
Aninstructional series of lessons designed to get you off to a quick and successful
start with PV=WAVE.

PV-WAVE User’s Guide
Detailed information about how to use the numerous features of PV=WAVE.

PV-WAVE Programmer’s Guide

Documentsthe PV=WAV E command language, which contains all the familiar fea-
tures of typical 4GL languages, such as FORTRAN, Pascal, and BASIC.

PV-WAVE Application Developer’s Guide

Discusses how to develop applications in PV=WAVE that have a Graphical User
Interface (GUI). This manual discusses interapplication communication, building
VDA Tooals, using WAV E Widgets (Ww) and Widget Toolbox (Wt) routines, and
the Option Programming Interface (OPI).

4 PV-WAVE User’s Guide

PV-WAVE Reference (Volumes 1, 2, and 3)

A three-volume set that describes the PV=WAV E functions and procedure, key-
words, system variables, fonts, executive commands and device drivers.

Documentation for Optional PV-WAVE Products

PV-WAVE IMSL Mathematics Toolkit

Descriptions of the routines that provide focussed, powerful tools for mathemati-
cal, statistical, and scientific computing. Many examples are included, so you can
easily see how to apply these routines to your own work.

PV-WAVE IMSL Statistics Toolkit

Descriptions of the routines that provide focussed, powerful tools for mathemati-
cal, statistical, and scientific computing. Many examples are included, so you can
easily see how to apply these routines to your own work.

PV-WAVE:GTGRID

Powerful interpolation and extrapolation techniques provided by
PV=-WAVE:GTGRID are used in PV=WAVE to produce technically superior grid-
ded data sets. Even if your data set islarge, sparse, faulted, noisy, or non-uniform,
PV=WAVE:GTGRID providesyou with the best in awide choice of traditional and
state-of-the-art algorithms for the gridding process.

PV-WAVE:Signal Processing Toolkit

Signal processing iswidely used in engineering and scientific research and devel-
opment for representing, transforming, and manipulating signals and the
information they contain. The PV=WAVE:Signal Processing Toolkit isacollection
of digital processing functions that work in conjunction with PV=WAVE Advan-
tage. These functions are designed for easy use by the beginning signal processor,
while providing the advanced signal processor with many options for solving dif-
ficult problems.

PV-WAVE:Image Processing Toolkit

Image Processing is used in anumber of different fields, including biomedicine,
microscopy, remote sensing, and scientific research. Common image processing
operations include image visualization, transformation, filtering, and analysis.
These types of functions and more are provided in the Image Processing Toolkit.
The easy-to-use functions are avail able from the PV=WAV E command line aswell

The Printed Documentation Set 5

as through a graphical user interface designed using the PV=WAVE Visual Data
Analysis (VDA) technol ogy.

PV-WAVE:Database Connection

PV=WAVE isthe only Visual Data Analysis product to let you directly connect,
guery, and extract data from possibly your most valuable corporate asset — your
formal SQL database. Database Connection uses standard SQL select statements
to let you extract the data you need from any SQL database in your network. In
combination with PV=WAVE's integrated table tools for managing and manipul at-
ing tabular data, thereis no better way to extract meaning —and value — from your
data.

PV-WAVE:ODBC Connection

PV=WAV E:ODBC Connection functions et you import data from ODBC compli-
ant data sources into PV=WAV E for Windows. Once the dataisimported, you can
use PV=WAVE to analyze, manipulate, and visualize the data.

JWAVE

JWAVE letsyou create Java client applicationsthat communicate directly with PV-
WAV E running on aremote server. On the server side, PV-WAVE code is used to
analyze dataand generate graphics. On the client side, aJavaapplet (or application)
lets usersinteract with the PV-WAVE session and display the graphics returned
from PV-WAVE.

Using the Gallery

The PV=WAVE Gallery is asuite of sample PV=WAVE applications. The entire
Gallery program iswritten using PV=WAV E to display awiderange of application
areas appropriate for Visual Data Analysis. The application code and datafiles are
provided so you can extract parts of them and use them within your own
applications.

6 PV-WAVE User’s Guide

]| 0il/Gas Exploration Demonstrati
af High Oil Potentiol

Display Selections

Display Well Log
Display Well Paths
Display Oil Potential

View Rotation

Z-fxis (Degs.) 60

1= i

0 180

X-Puis (Degs.) 35
|

o 90

Gamima Legend Sonic Legend

Messages: er Selecting View Rotation Angles.

=]

Figure 1-1 Advanced rendering techniques are used to display a region of high oil potential
in this example from the PV-WAVE Gallery.

The objective of the Gallery isto highlight the performance and flexibility of
PV=WAVE. While your own applications may be more or less elaborate, the Gal-
lery hel ps you understand how PV=WAV E hel ps users discover and understand the
trends, anomalies, and relationships in their data.

PV-WAVE Gallery Setup Under UNIX and OpenVMS

Starting the PV=WAVE Gallery issimilar to starting up PV=WAVE. Firgt, set up the
environment variables and then start the Gallery:

From a C shell:

(UNIX) source $VNI_DIR/wave/bin/wvsetup
wave gallery

where VNI_DIR isthe directory in which PV-WAVE isinstalled.
From a Korn or Bourne shell:
(UNIX) source $VNI_DIR/wave/bin/wvsetup.sh

wave gallery

where VNI_DIR isthe directory in which PV-WAVE isinstalled.
(OpenVMS) @VNI DIR: [WAVE.BIN]WVSETUP.COM

Using the Gallery 7

@wave gallery.com
where VNI_DIR isthedirectory in which PV-WAVE isinstalled.
You can run the Gallery interactively by selecting the Gallery’s menu buttons.

PV-WAVE Gallery Setup Under Windows

You can start the PV=WAVE Gallery from the WAVE > prompt.
First, start up PV=WAVE.

Next, at the WAVE > prompt, press the F2 key,

—OR—

type the command for starting the Gallery.

WAVE> wave gallery
You can run the Gallery interactively by selecting the Gallery’s menu buttons.

Using the Demo Files
A great many demonstration programs are distributed with PV=WAVE. Most of
these programs are located under:
(UNIX) <wavedir>/demo
(OpenVMS) <wavedirs: [DEMO]
(Windows) <wavedirs\demo
Where <wavedir> isthe main PV=WAVE directory.

Thisdemonstration areais freely available to you to explore. All of the demonstra-
tion programs are written in the PV=WAV E language. You can use any of the code
from these programsin your own applications. In many of thedirectories, README
files describe the demonstration programs in detail. Additional information can be
found as comments in the program files themselves.

8 PV-WAVE User’s Guide

Getting Started: UNIX and OpenVMS

This chapter explains how to get started using PV=WAVE if you are running under
UNIX or OpenVMS.

Starting PV-WAVE

Before running PV=WAVE, the wvsetup command (UNIX) or WWSETUP . COM
command (OpenVMS) must have been executed one time after installation. These
commands are described in detail in your installation guide.

Starting PV-WAVE Interactively

To start PV=WAVE, at the operating system prompt type wave and press
<Return>. The PV=WAVE prompt appears:

WAVE>
Thisisamodewhere you can interactively enter commands at the WAVE > prompt.

If you seean error and PV=WAV E does not start, refer to your installation guide for
troubleshooting information.

UNIX USERS If you use aKorn shell note the following: If you use either set
-0 nounset or set -uinyour shell, entering the wave command without a
parameter causes an error. These ksh commandstell the shell to treat unset param-
eters as an error when substituting. After running wvsetup . sh, PV=WAVE
expects $* to contain the parameters to the wave call. Since set -u or

set -o nounset tell ksh to treat unset parameters as an error, calling
PV=WAV E without parameters will cause that error.

OpenVMS USERS You may need to increase your process defaultsto run
PV=WAVE, especidly if you use large datasets. Your OpenVMS system adminis-
trator can help you set your process defaults properly. The Guide to OpenVMS
Performance Management provides adiscussion of process limits and parameters.
For example, the following process limits work well for the PV=WAVE Gadlery:

WSdef: 5000
WSquo: 20000
Pgflquo: 100000

Executing a Command (Batch) File at Startup

A commandfile, or “batchfile”, isafilethat contains PV=WAV E commands. When
acommand fileis executed, each command in thefileis executed. When the end of
the file is reached, control reverts to the interactive mode, that is, the WAVE >
prompt isdisplayed, and you can type commands from the keyboard. Also you may
call the EXIT procedure from within the command file to exit PV=WAVE and
return to the operating system prompt.

You can execute acommand file directly at startup by entering the following at the
operating system prompt:
wave filename

NOTE The filename must be a correctly constructed command file. It cannot be a
PV=WAVE procedure file. Command files are explained in more detail in the PV-
WAV E Programmer’s Guide.

You can also set the environment variable (or OpenVMS logical)
WAVE_STARTUP to execute a command file when you enter the command that
starts PV=WAVE. See the PV-WAVE Programmer’s Guide for more information.

PV-WAVE User’s Guide

Stopping PV-WAVE

The simplest way to stop PV=WAVE isto type EXIT or QUIT at the WAVE >
prompt. Other more complicated methods of stopping include aborting, suspend-
ing, and interrupting. All these methods are explained in this section.

Exiting PV-WAVE

CAUTION When you exit PV=WAVE, you are returned to the operating system
prompt. Variable assignments arelost unlessyou saved them yourself by saving the
session; however, datathat is buffered for open output filesis flushed to these files
before exiting is complete.

Exiting on a UNIX System

If you type EXIT or QUIT at the WAVE> prompt, you will exit back to the operat-
ing system. Entering a <Control>-D asthe first character on the command line
performs the same function. If the <Control>-D is not the first character on the
command line, it simply ends the input line as if a<Return> had been entered.

Exiting on an OpenVMS System

If you type EXIT or QUIT at the WAVE > prompt, you will exit back to the operat-
ing system. Entering a <Control>-Z as the first character on the command line
performs the same function. If the <Control>-Z is not the first character on the
command line, it ends the input line asif a <Return> had been entered. The input
line is executed, and then PV=WAVE exits.

Suspending PV-WAVE

When you suspend PV=WAVE, you are returned to the operating system prompt;
however, PV=WAVE is still running as a background process. All variables and
their values are saved.

Suspending PV-WAVE on a UNIX System

<Control>-Z isthenormal UNIX suspend character. Temporarily, it stopsaprocess
and placesit in the background. Typing the suspend character suspends PV=WAV E
and returns you to the shell process where you can enter one or more commands,
for example, to run atext editor. After completing the commands, type fg to return
PV=WAVE to the foreground.

Stopping PV-WAVE 11

Suspending PV-WAVE on an OpenVMS System
There is no method for suspending PV=WAVE on OpenVMS systems.

Interrupting the Current PV-WAVE Command

<Control>-C istheinterrupt character. Typing the interrupt character generates a

keyboard interrupt. Under OpenVMS, <Control>-C is always the interrupt charac-
ter. However, under UNIX, the interrupt character can be changed by you outside
of PV=WAVE. Thisisrarely done, so for the purposes of this manual, we assume
the default convention.

When you type <Control>-C at the WAVE > prompt, the following message is
displayed:

)

% Interrupt encountered.

When the interpreter regains control, you are returned to the WAVE > prompt. You
can continue after interrupting PV=WAV E with the .CON executive command. For
more details about using executive commands such as .CON to control programs,
see the PV-WAVE Reference.

Aborting PV-WAVE

When you abort PV=WAV E, amessage appears, suichasquit (core dumped)
and you are returned to the operating system prompt. Remove the core file before
re-entering PV=-WAVE.

Aborting on a UNIX System
Aswith any UNIX process, PV=WAVE may be aborted by typing <Control>-\.

CAUTION Thisisavery abrupt exit — al variables arelost, and the state of open
fileswill be uncertain. Thus, although it can be used to get out of PV=WAVE in an
emergency, its use should be avoided.

After aborting PV=WAVE inaUNIX environment, you may find that your terminal
is set up improperly. You can restore the proper settings for your terminal by issu-
ing the UNIX command:

% reset

or

% stty echo -cbreak

12

PV-WAVE User’s Guide

Aborting on an OpenVMS System

Aswith any OpenVMS program, PV=WAV E may be aborted by typing <Control>-
Y.

CAUTION Aborting PV=WAVE with <Control>-Y should only be used as an
emergency measure since all the variables arelost and some output may disappear.

It is possible to resume PV=WAVE by typing the DCL command:
$ CONTINUE
However, if any DCL command that causes OpenVMS to run anew program is

issued prior to the CONTINUE command, the PV=WAVE sessionistotally andirre-
versibly lost.

Entering Commands at the Command Line

When the WAVE > prompt isvisible, you are located at the PV=WAVE command
line. The command line gives you immediate access to all the data analysis and
graphics display commands and procedures that are part of PV=WAVE.

For example, the following command produces an XY plot of the integers 0 to 99:

WAVE> PLOT, INDGEN(100)

NOTE ThecommandsPLOT and INDGEN are PV=WAV E system routines. There
are many such routines, which are all documented in the PV-WAVE Reference.

Asyou enter commands at the keyboard, they are compiled and executed immedi-
ately. You see the data transformations and results on your computer screen
instantly.

When using the command line, dataanalysisisquick and smple. Using PV=WAVE
commands, you read in the data and, within seconds, you can begin manipulating
it, discovering what trends and patternsit holds. Here are some additional examples
of commands entered directly at the PV=WAV E command line.

WAVE> x = 7*8
; Assigns the value of 7 times 8 to the variable x.
WAVE> PRINT, 'x = ', X
X = 56
; Prints the string “x =” and the value of x which is 56.

Entering Commands at the Command Line 13

WAVE> SET PLOT, ’'PS’

; This command tells PV=WAVE to use the PostScript driver to

; produce graphics output for a PostScript printer or plotter.
WAVE> .RUN testfile

; Compiles and runs the file named testfile. If this file is not found in

; the current directory, the directory search path is examined.
WAVE> FOR I = 1,3 DO PRINT, I, I™2

1 1

2 4

39

; This statement calculates the square of the numbers 1 through 3.

Function and Procedure Libraries

Some functions and procedures come from an areaknown asthe Standard Library.
These are routines that have been written using the PV=WAVE language and are
fully documented and supported by Visual Numerics, Inc.

You can also use functions and procedures from the Users’ Library. Thislibrary
contains many useful routines that have been written and submitted by PV=WAVE
users; however, the routines in this area are not officially supported by Visual
Numerics, Inc.

The source code for Standard Library routinesisin:
(UNIX) <wavedirs>/lib/std

(OpenVMS) <wavedirs>: [LIB.STD]

The source code for Users' Library routinesisin:
(UNIX) <wavedir>/lib/usr

(OpenVMS) <wavedirs>: [LIB.USR]

Where <wavedirs> isthe main PV=WAVE directory.

For more information on the Users’ Library, see the PV-WAVE Programmer’s
Guide.

Using Keywords to Modify Commands

Keywords are optional parameters that modify PV=WAVE commands. The PV-
WAVE Referencelists every keyword associated with each command. For example,
the PLOT command, which isused to create 2D line plots has dozens of keywords
associated with it. These keywords can be used to add titles, change the color,

14

PV-WAVE User’s Guide

thickness, and style of lines, modify the way axis tick marks appear, change the
datarange, add symbols, and many more.

In the following example, the keyword used to modify the plot is shown in bold
type:
PLOT, INDGEN(100), Title = ’'Hello World’

Keywords are normally assigned either a numerical or string value. Some key-
words are Boolean in nature and can either be on or off. To turn such a keyword
“on”, set it equal to 1 or precede the keyword by a/ (backslash). Preceding a key-
word by abackslash is equivalent to setting it equal to 1. To turnit “off” setitto 0.
For example:

PLOT, INDGEN(100), INDGEN(100), /Polar

and

PLOT, INDGEN(100), INDGEN(100), Polar=1l

are equivalent statements. They both activate the Polar keyword, which creates a
polar plot instead of a Cartesian X-Y plot.

Most keywords have default values. The default for the Polar keyword is 0, or inac-
tive. The default values for some keywords are determined by system variables.

Relationship Between Keywords and System Variables

For some keywords, the default values are derived from system variables, which
are aspecia class of predefined variables available to all PV=WAVE applications.
All system variables are denoted with aninitial exclamation point (!). For example,
the system variable !P.Color contains the default setting for the keyword Color.

When using many plotting functions and procedures, the keyword Color can be
used to change the value of !P.Color. Here's an easy way to use a system variable
to change the value of !P.Color to a bright purple color:

TEK_COLOR
; This command loads 32 predefined, unique, highly
; saturated colors into the bottom 32 indices of the
; color table.

IP.Color = 6
; Changes !P.Color to purple (the color identified by
; the color index 6). The change is temporary — it only lasts
; until some other color table is loaded or until you end
; your PV=WAVE session. For more permanent results,
; you can save your session, and then this setting is
; available for later use.

Entering Commands at the Command Line 15

For more information about system variables, see the PV-WAVE Programmer’s
Guide. For moreinformation about saving sessions, see Saving and Restoring Ses-
sions on page 16 in this manual.

Using Command Recall

PV=WAVE saves the last 20 command lines you enter. These command lines can

be recalled, edited, and re-entered. For example, the up cursor key on the keypad

recallsthe previous command you entered. Pressing it again recallsthe line before
that, and so on. When a command isrecalled, it is displayed after the PV=WAVE

prompt and may be edited or entered asis.

The command recall feature is enabled by setting the system variable 'Edit_Input
to 1, and is disabled by setting it to O.

Getting Information about the Current Session

The INFO procedure provides information about the PV=WAVE sessionin
progress.

Cdlling INFO with no parameters displays an overview of the session, including
the current definitions of al of your variables. You can obtain more specific
information about the session by providing keywords with the INFO command.

For example, INFO, /Device providesinformation about the current graphics
device being used by PV=WAVE. The command INFO, /Memory reportsthe
amount of dynamic memory in use and the number of times it has been allocated
and deallocated. For more information about the INFO procedure, see Getting Ses-
sion Information in the PV-WAV E Programmer’s Guide.

Saving and Restoring Sessions

The SAVE and RESTORE procedures are used together to save the state of user-
generated variables, system variables, and compiled procedures and functions. The
saved session can then berestored at alater time. Thisability to “ checkpoint” ases-
sion and then recover it later can be very convenient. Save files can be used for
many purposes:

* Savefilescan beused to recover variablesthat are used from session to session.
A startup file can be used to execute the RESTORE command every time

16

PV-WAVE User’s Guide

PV=WAVE is started. See Modifying Your Environment in the PV-WAVE Pro-
grammer’s Guide for more details.

» The state of asession can be saved, then quickly restored to the same point,
alowing you to stop working, and then later resume at a convenient time.

» Savedfilesrelieve you of the need to remember the dimensions of arrays and
other details. It isvery convenient to storeimagesthisway. For example, if the
threevariablesr, G, and B hold the colortabl e vectors, and the variable Image
holds the image data, the statement:

SAVE, Filename='image.dat’, R, G, B, Image
saves everything required to display the image properly, in afile named
image.dat. At alater time, the command:

RESTORE, ’image.dat’

will restore the four variables from thefile.

* Long iterative jobs can save partial results in Save/Restore format to guard
against losing data if some unexpected event such as a machine crash were to
occur.

* When used with the Wavepoint keyword, SAV E saves PV=WAVE variables so
that they can be read into PV=WAVE Point & Click and PV=-WAVE Personal
Edition. Thiskeyword isdisabled for the Digital AlphaDigital UNIX platform.

Using the SAVE Procedure

You can save user-generated variabl es, system variables, compiled procedures, and
compiled functions for future sessions.

Saving for Future Sessions

The SAVE procedure saves variables, system variables, and compiled user-written
procedures and functionsin afile, using an efficient binary format, for later recov-
ery by RESTORE. It has the form:

SAVE [, vary, ..., var,]

where var,, are the named variables to be saved. In addition, you can use keywords
with SAVE. For a description of these keywords, see Chapter 2, Function and Pro-
cedure Reference in the PV-WAVE Reference.

Saving and Restoring Sessions 17

CAUTION Under UNIX, creating anew save file causes any existing file with the
same name to be lost. Use the Filename keyword with SAVE to avoid destroying
desired files. For more information, see the PV-WAV E Reference.

Using the RESTORE Procedure

The RESTORE procedure restoresthe objects previously saved in asavefile by the
SAVE procedure.

RESTORE has the form:
RESTORE [, filename]

where filename is the name of the save file to be used. If filename is not supplied,
thefilename wavesave . dat isused. In addition, you can use keywords with
RESTORE. For adescription of these keywords, see the PV-WAV E Reference.

Situations in which the contents of the file will not be restored are:

* When attempting to restore a structure variable, the structure of the saved vari-
able must either not exist, or must agree with the existing structure definition.
If the structure is aready defined and does not match, RESTORE issues an
error message, skipsthe variablein question, and continues with the next vari-
ableinthefile. Thisaso appliesto system variables.

NOTE Visua Numerics, Inc., reservesthe right to change the structure of system
variables, although such changes are not anticipated. Generally, thereislittle need
to save system variables, so this restriction is not a problem.

» Read-only system variables are not restored. RESTORE quietly skips over
such variablesin the file unless the Vierbose keyword is present. In this case an
informative message isissued as the variable is skipped.

Printing Your Work

PV=WAV E supports a number of output devices and formats, such as PostScript
printers, HPGL and PCL plotters, and Computer Graphics Metafiles (CGM). These
output device drivers are described in detail in the PV-WAVE Reference.

The five steps you take to produce graphics output are the same no matter which
output device or format you use. The steps are:

18

PV-WAVE User’s Guide

U

Select the graphics output device or format. (This automatically opens an out-
put file.)

Configure the output device to your specifications.
Enter the PV=WAV E commands to display your graphics
Close the output file.

U000

UseaUNIX or OpenVMS system command to send the output fileto a printer
or plotter.

For example:
SET_PLOT, 'ps’
; Select the graphics device.

DEVICE, Filename='myplot.ps’, /Eps

; Configure the output device. This command specifies
; the output filename and the type of file — Encapsulated
; PostScript (EPS).

PLOT, INDGEN(100), Title='Hello World’
; Enter the graphics commands.

DEVICE, /Close
; Close the device.

$lpr myplot.ps
; Print command on a UNIX system. The dollar
; sign ($) is used to issue an operating system command
; from PV-WAVE.

Sprint/queue=post g myplot.ps
; Print command on an OpenVMS system. The dollar
; sign ($) is used to issue an operating system command
; from PV-WAVE.

Each step is described in the following sections.

Selecting the Output Device with SET_PLOT
Select a graphics output device with the SET_PLOT command. The command is:
SET_PLQT, string’

where string can be any one of the following letter codes:
Device Driver Codes

Code Output Device

CGM Computer Graphics Metafile format

Printing Your Work 19

Device Driver Codes (Continued)

Code Output Device

HP HPGL device
PCL PCL device

PS PostScript device
TEK Tektronix terminal

For example, this command sel ects the PostScript device:
SET PLOT, 'ps’

Configuring the Output Device with DEVICE

Once the graphics output device has been selected, it is controlled or configured
with the DEVICE command. The DEVICE command uses keywordsto control the
specific functions of each output device. Since each output device is unique, the
number and names of keywords that are valid with the DEVICE command are dif-
ferent depending upon the device selected. For example, the DEVICE command
for the PostScript device has 34 valid keywords, whereas the same DEVICE
command for the Tektronix 4510 rasterizer has only 10 valid keywords.

The DEVICE keywords for each output device supported by PV=WAVE arelisted
in the PV-WAVE Reference.

If no DEVICE command isissued after the SET_PL OT command, then the device
is configured with default values. To see the current configuration of any output
device, issuethe SET_PLOT command to select the device and then use the INFO
command to obtain information about the device. For example, to learn the current
configuration of the PostScript device, you would type the following:

SET_PLOT, ’'ps’
INFO, /Device

Entering Graphics Commands for Output

After you have configured the output device to your specifications, you now enter
appropriate graphics commands for the output you wish to produce. These are the
same graphics commands you would issue if you were displaying output on adis-
play screen. For example, any of the following graphics commands would be

appropriate:

20

PV-WAVE User’s Guide

PLOT, mydata, Title=’'Available Light ’ + 'Measurement'
TVSCL, my—image

PLOTS, x, y, /Normal

SHADE SURF, peak, Shades=peak colors

XYOUTS, 300, 450, ’'Lost acreage’, /Device

SURFACE, peak, Bottom=35, Color=248

Closing the Output File

Before the graphics output file can be sent to the printer or plotter it must be closed.
For example, the following commands do not print afile, asyou might expect:

SET_PLOT, 'ps’
PLOT, x, vy
SPAWN, ’'lpr wave.ps’

Thisattempt to print thefileis premature. It fail sbecausethefileisstill openwithin
PV-WAVE.

Files are closed automatically when you exit PV=WAVE, but the best way to close
an output fileisto close it explicitly with the DEVICE command. After you enter
the graphics commands for your desired graphics output, enter the following
command to close the output file:

DEVICE, /Close

Sending the Output File to the Printer or Plotter

Once an output file has been closed, it can be sent to a printer or plotter in the nor-
mal way (e.g. with an 1pr command in a UNIX environment or aprint
command in an OpenVM S environment). But it is often more convenient to send a
fileto aprinter or plotter without exiting PV=WAVE. The best way to do thisisto
usethe“$” shortcut method for spawning an external process. For example, you
could issue one or the other of the following two commands at the PV=WAVE
prompt to send afile named peak . ps to a PostScript printer:

(UNIX) WAVE> $lpr peak.ps
(OpenVMS) WAVE> S$Sprint/queue=post g peak.ps

NOTE |If your PostScript printer looks like it is printing something, but nothing
comes out, you may have forgotten to close thefile before you sent it to the printer.

Printing Your Work 21

22

PV-WAVE User’s Guide

Getting Started: Windows

This chapter explains how to get started using PV=WAVE if you are running under
Microsoft Windows.

Starting PV-WAVE

You can start PV=WAVE in one of two “modes’: Console mode or Home window
mode.

In Console mode, you have accessto the WAVE > prompt only. Home window mode
provides additional features, such asmenusand atool bar, to help you manage your
Session.

NOTE Refer to online help for information on the featuresfound in the Homewin-
dow. Start by selecting On Window from the Home window Help menu.

Under Windows NT

When PV=WAV E wasinstalled on your system, aPProgram Group was created. You
can start PV=WAVE from an icon in the PV=WAVE Program Group or by typing
one of the following startup commandsin MS DOS window:

QO <install directory>\wave\bin\bin.i386ént\wave — Starts
PV=-WAVE in Console mode.

U <install directorys\wave\bin\bin.i386ént\wavewin— Starts
PV=WAV E in Home window mode.

23

After abrief pause, the PV=WAVE Console or Home window appears displaying
the PV=WAVE prompt:

WAVE>

When you see this prompt, PV=WAVE is ready for you to enter commands.

Under Windows 95

When PV=WAVE was installed on your system, PV=WAV E startup commands
were added to the Start button. You can start PV=WAVE by selecting Start=>Pro-
grams=>PV-WAVE 6.0 or by typing one of the following startup commandsin an
MS-DOS window:

U <install directory>\wave\bin\bin.i386nt\wave — Starts
PV=WAVE in Console mode.

U <install directorys\wave\bin\bin.i386nt\wavewin— Starts
PV=-WAV E in Home window mode.

After abrief pause, the PV=WAVE Console or Home window appears displaying
the PV=WAVE prompt:

WAVE>

When you see this prompt, PV=WAVE is ready for you to enter commands.

Summary of PV-WAVE Startup Commands

You can start PV=WAV E in Home window mode, Console window mode, or DDE
server mode. The command syntax for each mode is presented in the following
table.

Command Line Syntax for Running PV=WAVE

Command Mode

wave Run PV=WAVE in a Console window. (The options are
described in the next table.)

wavewin Run the PV=WAV E Home window.

wavedde Run PV=-WAVE as a DDE (Dynamic Data Exchange) server.

This startup command is discussed later in this chapter.

The command line options available for the wave command are listed in the
following table.

24

PV-WAVE User’s Guide

Command Line Options for the wave Command

Command Line Option Meaning

filename Execute a command file during startup.

— or —1t plusfilename Start PV=WAVE in runtime mode. The previously com-
piled application stored in filename starts automatically.

Note: Command line options are not case-sensitive. In other words, they can be
entered in either lower, mixed, or upper case.

NOTE Severd of PV=WAVE's command line options can be combined on one
command line.

Standard 1/0 and Error Redirection

Previous versions of PV=WAVE on Windows (before Version 6.0), allowed
command line flags for standard I/O and error redirection. With Version 6.0, these
flags are no longer supported. Instead you can use standard 1/O redirection on the
command line. For example, the previous command line flags:

wave -i infile -o outfile -e errfile
can be replaced with:

wave < infile > outfile 2> errfile
in PV-WAVE 6.0.

Only the wave command supports I/O redirection. The wavedde supports redi-
rection of standard output and standard error, but not standard input (sinceinput is
accepted only from DDE clients). The command wavewin does not support any
I/O or error redirection.

Stopping PV-WAVE

The simplest way to stop PV=WAVE isto type EXIT or QUIT at the WAVE >
prompt. You can also interrupt the current PV=WAV E command and then resume
with the .CON command, as explained in this section.

Exiting PV-WAVE

Entering an EXIT or QUIT command at the WAVE > prompt causes PV=WAVE to
exit unconditionally, and you are returned to the operating system prompt. The

Stopping PV-WAVE 25

same thing happens if you enter <Control>-D or <Control>-Break; for more
details, refer to Control Charactersthat Interrupt or Stop PV-WAVE on page 26.

CAUTION When you exit unconditionally, variable assignments are lost and any
customizationsmadeto PV=WAV E, such as changing thefont used in the windows,
arelost unlessyou have explicitly saved them yourself by saving the session. How-
ever, datathat isbuffered for open output filesisflushed to thesefiles before exiting
iscomplete.

Interrupting the Current PV-WAVE Command

If you are running PV=WAV E in Console mode, <Control>-C istheinterrupt char-
acter. Typing the interrupt character generates a PV=WAV E keyboard interrupt.
When you enter the interrupt character at the WAVE > prompt, the following mes-
sage is displayed:

% Interrupt encountered.

When the interpreter regains control (there may be a noticeable delay), you are
returned to the WAVE > prompt. After interrupting PV=WAVE, you can continue
with the .CON command. For more details about using executive commands such
as .CON to control programs, see the PV-WAV E Reference.

Control Characters that Interrupt or Stop PV-WAVE

Thissection describesindividual charactersthat can be entered in conjunction with
the <Control> key to interrupt or stop PV=WAVE. These characters are summa
rized in the following table.

Character Action

<Control>-C Keyboard interrupt; enter .CON to continue.
<Control>-D Signifies EOF; causes PV=WAVE to exit.
<Control>-Break Abort.

NOTE The control characters listed in the previous table are only recognized in
the Console window. Control characters are not recognized in any auxiliary win-
dows, such as graphics windows. (Exception: <Control>-C is astandard Windows
accelerator, so it isrecognized in any window where a Copy to Clipboard operation
is meaningful.)

26

PV-WAVE User’s Guide

Executing a Command (Batch) File at Startup

A command file, or “batchfile,” isafilethat contains PV=WAV E commands. When
acommand file is executed, each command in it is executed. When the end of the
command file is reached, control reverts to interactive mode. In other words, the
Console window and the WAVE > prompt are displayed, and you can make menu
selections and type commands from the keyboard. Alternatively, you may call the
EXIT procedure from within the command file to exit PV=WAV E and return to the
operating system prompt.

You can execute acommand file directly at startup by entering the following
command at the prompt in an MS-DOS window:

wave filename

NOTE The filename must be a correctly constructed command file. It cannot be a
PV=WAVE procedure file or afile created with the SAVE procedure. Command
files are explained in more detail in the PV-WAV E Programmer’s Guide.

You can also set the environment variable WAVE STARTUP to execute acommand
file when you enter the command that starts PV=WAVE. For more details, see the
PV-WAV E Programmer’s Guide.

DDE Runtime Mode — wavedde

The DDE runtime mode initializes PV=WAVE as a DDE (Dynamic Data
Exchange) server. The PV=WAVE DDE server runtime mode is a non-interactive
version of PV=WAVE that serves DDE requests from client applications that are
able to access PV-WAVE functionality. In other words, when PV=WAV E has been
initialized asa DDE server, another application can enter the commandsto control
this version of PV=WAVE.

Textual output and messages are displayed in the shell window from which the
PV=WAV E DDE Server was launched. If the server was|launched from anicon (or
Start button), then a separate console window is created on the desktop to display
the output.

For more information about how to start PV=WAVE as a DDE (dynamic data
exchange) server, see the PV=WAVE Development Guide.

For more information on starting PV=WAVE in runtime mode, see the PV-WAVE
Programmer’s Guide.

Executing a Command (Batch) File at Startup 27

Windows Used by PV-WAVE

Under Microsoft Windows, PV=WAVE uses different types of windows for differ-
ent tasks. The different classes of windows PV=WAVE uses are listed in the
following table:

Windows PV=WAVE Uses

Window Function

Home Displays the WAVE > prompt for entering PV=WAVE com-
mands. In addition, provides menus and atool bar to help you
manage your session. Refer to online help for information about
the Home window.

Console Displaysthe WAVE > prompt for entering PV=WAV E com-
mands.

Graphics Displays PV=WAVE graphics.

Help Displays PV=WAVE online help.

Home Window

For detailed information on the Home window, refer to online hel p—sel ect
Help=>0n Window.

Console Window

The Console window is where commands are entered and where PV=WAVE dis-
plays its messages and textual output.

TIP To use cut and paste in the Console window under Windows 95, you need to
disable the Fast Paste function. To do this, click on the Properties icon inthe MS-
DOS window where you are running PV=WAVE. Fast Pasteislisted under the
Misc tab.

NOTE The Console window differs dightly between Windows NT and Windows
95. The Windows 95 version contains arow of icons used for editing text. For
information on these functions, refer to Windows online help. The following fig-
ures show both the Windows NT and Windows 95 versions of the Console window
for PV=WAVE.

28

PV-WAVE User’s Guide

Graphics Windows

PV=WAV E graphics windows are used to display datain avariety of ways. The
type of graphics window you choose to use depends on the dimensions of the vari-
ables you have to display and the type of analysis you wish to perform. For
example, if you haveimported 8-bit image data, you would probably usethe TV or
TVSCL commandsto view your data as an image. Theimageisthen displayed in
a graphics window.

=] WAVE 0

Figure 3-1 PV-WAVE graphics windows

Help Window

The PV=WAV E Help window displays information from PV=WAVE's online help
system. The Help window includes controlsthat you can use to accesstheinforma-
tioninavariety of ways. Refer to the online help topic, How to Use Help, for more
detailed information about the Help window, and Using Online Help on Windows
on page 3 of this manual.

Windows Used by PV-WAVE 29

You can accessthishelp topic by selecting Help=>How to Use Help from virtually

any Windows application, including PV=WAV E. An example of aPV=-WAVE Help
window is shown in Figure 3-2.

& PV-WAVE Help

H[=] E3
File Edit Bookmark Optionz Help
Qontentsl §earch| Each | Print |
REBIN Function
See Also Examnple
Returns a vector or array resized to the given dimensions. ii

Usage
resuif = REBIN{array, dim, ..., dirm,)

input Parameters

atray --The array to be sampled. Cannot be of string or complex data type.
Must have the same number of dimensions as the number of dimension
parameters that yau supply.

dimm; -- The dimension(s) of the resampled array. Must be integral multiples
or factors of the original array's dimension(s).
Returned Value

resuif -- The resized (resampled) vector ar array.

input Keywords

Sampie - If present and nonzero, specifies that nearest neighbor sampling
is to be used for both maagnifying and shrinking operations.

If not present, specifies that hilinear interpolation is to be used for
magnifying and that neighborhood averaging is to be used for shrinking.
(Bilinear interpalation gives higher guality results, but requires mare time)

Discussion

The expansion or compression of each dimension is independent of the
others; REEIN can expand or compress ane dimension while leaving the =l

Figure 3-2 PV=WAVE Help window (Windows 95 version).

Entering Commands at the Command Line

This section discusses ways to communicate with PV=WAVE.

When the WAVE > prompt is visible, you are located at the PV=WAVE command
line. The command line gives you immediate access to all the data analysis and
graphics display commands and procedures that are part of PV=WAVE.

30

PV-WAVE User’s Guide

NOTE The PV-WAVE Reference describes al of the PV=WAVE commands (func-
tions and procedures).

Asyou enter commands at the keyboard, they are compiled and executed immedi-
ately. You see the data transformations and results on your computer screen
instantly.

When using the command line, dataanalysisis quick and ssmple. Using PV=WAVE
commands, you read in the data and, within seconds, you can begin manipulating
it, discovering what trends and patterns it holds.

The following statements can be entered directly at the WAVE > prompt. They cre-
ateand initializethevariablesVERBM, VERBF, MATHM, and MATHF, which contain
the verbal and math SAT scores for males and females:

VERBM = [463, 459, 437, 433, 431, 433, 431, 428, 430, 431, 430]
VERBF = [468, 461, 431, 430, 427, 425, 423, 420, 418, 421, 420]
MATHM = [514, 509, 495, 497, 497, 494, 493, 491, 492, 493, 493]
MATHF = [467, 465, 449, 446, 445, 444, 443, 443, 443, 443, 445]

A vector in which each element contains the year of the score is constructed with
the statement:

YEAR = [1967, 1970, INDGEN(9) + 1975]

The PLOT procedure, which produces an x versus'y plot on a new set of axes,
reguires one or two parameters: a vector of y—values, or a vector of x-vauesfol-
lowed by avector of y—values. The following figure is produced using the
Statement:

PLOT, YEAR, VERBM

s00F T T T

_—

200 E

100 -

o]t L 3
19£6 1970 1975 1980 1985

Entering Commands at the Command Line 31

Figure 3-3 Initial 2D plot.

Function and Procedure Libraries

Some functions and procedures come from an areaknown asthe Standard Library.
These are routines that have been written using the PV=WAVE |anguage and are
fully supported by Visual Numerics, Inc. The source code for Standard Library
routines can be found in:

(Windows) <wavedir>\1lib\std

You can al so use functions and procedures from the User Contributed Library; this
areaisin

(Windows) <wavedir>\lib\user

Where <wavedirs> isthe main PV-WAVE directory.

Remember, however, that the routines in this area are not officially supported by
Visual Numerics, Inc.

For more information about how the Users’ Library is maintained, see the PV-
WAV E Programmer’s Guide.

Using Keywords to Modify Commands

Keywords are optional parameters that modify PV=WAV E commands. The PV-
WAVE Referencelists every keyword associated with each command. For example,
the PLOT command, whichisused to create 2D line plots, has dozens of keywords
associated with it. These keywords can be used to add titles, change the color,
thickness, and style of lines, modify the way axis tick marks appear, change the
datarange, add symbols, and many more.

The following example plots the values in the variable y. The keywords used to
modify the plot are shown in bold type:

PLOT, y, XRange = [200, 600], $
YRange = [-40, 40], Color = 36, $
Background = 110, XTitle = ’‘Index’, $
Title = 'PV-WAVE 2D Plot’, /Normal

Notice that keywords are normally assigned either anumerical or string value.
Some keywords are Boolean in nature and can either be on or off. To turn such a
keyword “on”, set it equal to 1 or precede the keyword by a/ (slash). Preceding a
keyword by a slash is equivalent to setting it equal to 1. To turn it “off” setitto 0.
For example:

PLOT, vy, /Polar

32

PV-WAVE User’s Guide

and

PLOT, y, Polar =1

are equivaent statements. They both activate the Polar keyword, which creates a
polar plot instead of a Cartesian X-Y plot.

Most keywords have default values. The default for the Polar keyword is 0, or inac-
tive. The default values for some keywords are determined by system variables.

Relationship Between Keywords and System Variables

For some keywords, the default values are derived from system variables. System
variables are a special class of predefined variables available to all PV=-WAVE
applications. All system variables are denoted with an initial exclamation point (!).
For example, the system variable !P.Color contains the default setting for the key-
word Color.

When using many plotting functions and procedures, the keyword Color can be
used to change the value of !P.Color. Here's an easy way to use a system variable
to change the value of !P.Color to a bright purple color:

TEK_COLOR
; This command loads 32 predefined, unique,
; highly-saturated colors into the bottom 32 indices
; of the color table.

!P.Color = 6

; Changes !P.Color to purple (the color identified by the

; color index 6). The change is temporary — it only lasts until

; some other color table is loaded or until you end your

; PV=WAVE session. For more permanent results, you can

; save your session, and then this setting is available for later use.

For more information about system variables, see the PV-WAVE Programmer’s
Guide. For more information about saving sessions, see Saving and Restoring
PV-WAVE Sessions on page 35 of this manual.

Using Command Recall
Torecall previously entered commands, use the arrow keys as shown in the follow-

ing table.

To access a previous command Pressthese keys

Move “up” Up arrow (1)

Entering Commands at the Command Line 33

To access a previous command Pressthese keys

Move “down” Down arrow ()

The command recall buffer “remembers’ the last 20 commands that you have
entered.

Function Keys

By default, the following keys are assigned to actions:
Keyboard Accelerator Function Keys

Function Key Action

F1 Invokes PV=WAVE's online help system.
F2 Begins the PV=-WAVE Gallery, an automated demonstration.
F3 Invokes PV=WAVE's INFO command and prints the current

session status to the screen.

TIP Thesefunction keys can be easily redefined, either by you or by someone else
at your site. Thistopic is discussed further in the next section.

Assigning Commands to Function Keys

Function keys may be equated to a character string using the DEFINE_KEY pro-
cedure. This allows frequently used strings and commands to be entered with a
single keystroke. For example, the <F1 0> key on your keyboard can be equated to
the string PLOT, as shown in the example below.

SETUP_KEYS
; Load predefined function key definitions.

DEFINE KEY, 'F10’, ’'PLOT’

; Enter the text “PLOT” at the WAVE> prompt when
; the F10 function key is pressed.

For detailed information on how to customize the behavior of your function keys
using the DEFINE_KEY procedure, seeits description in the PV-WAVE Reference.

To see how your function keys are presently defined, enter this command:

34

PV-WAVE User’s Guide

INFO, /Keys

TIP A natural place to put your key definitionsisin your startup file so that the
function keys are defined when PV=WAVE isinitialized. The defaults for the key
definitions are established by the SETUP_KEY S procedure that gets called from
thewavestartup file. For moreinformation about startup files, see the PV-
WAV E Programmer’s Guide.

Getting Information about the Current Session

The INFO procedure provides information about the PV=WAVE session in
progress.

Cadling INFO with no parameters displays an overview of the session, including
the current definitions of all of your variables. You can obtain more specific infor-
mation about the session by providing keywords with the INFO command.

For example,
WAVE> INFO, /Device

provides information about the current graphics device being used by PV=WAVE,
and

WAVE> INFO, /Memory

reports the amount of dynamic memory in use and the number of timesit has been
allocated and deallocated. For more information about the INFO procedure, see
Getting Session Information in the PV-WAV E Programmer’s Guide.

Saving and Restoring PV-WAVE Sessions

You can enter the SAVE and RESTORE commands at the WAVE > prompt. These
functions are used to save and later restore the state of user-generated variables,
system variables, and compiled procedures and functions.

CAUTION If you run PV=WAVE in a Console window, you will not be prompted
to save your session when you close the Console window or when you exit
Windows.

Getting Information about the Current Session 35

This ability to “checkpoint” a session and then recover it later can be very conve-
nient. Save files can be used for many purposes:

» Savefilescanbeusedto recover variablesthat are used from session to session.
A startup file can be used to execute the RESTORE command every time
PV-WAVE is started. See the discussion of startup filesin Modifying Your
Environment in the PV-WAV E Programmer’s Guide.

» The state of a PV=WAVE session can be saved, then quickly restored to the
same point, allowing you to stop working, and then later resume at a conve-
nient time.

» Savedfilesrelieve you of the need to remember the dimensions of arrays and
other details. Itisvery convenient to store images thisway. For example, if the
threevariablesr, G, and B hold the color table vectors, and thevariable Image
holds the image data, the PV=WAVE statement:

SAVE, Filename='image.dat’, R, G, B, Image
saves everything required to display the image properly in afile named
image.dat. At alater time, the command:

RESTORE, ’image.dat’
will restore the four variables from thefile.

» Long iterative jobs can save partia resultsin save/restore format to guard

against losing data if some unexpected event such as a machine crash were to
occur.

NOTE For more information about the keywordsthat you can use when you enter
the command thisway, refer to the description of SAVE in Chapter 2, Function and
Procedure Reference in the PV-WAVE Reference.

CAUTION Creating anew save file causes any existing file with the same name
to belost. Usethe Filename keyword with the SAV E procedure to avoid destroying
files that you want to keep.

Using the RESTORE Procedure

The RESTORE command restores the objects previously saved in asavefilewhen
you used the SAVE procedure at the WAVE > prompt.

If afilenameis not supplied in the call to RESTORE, the filename
wavesave .dat isused. In addition, you can use keywords with RESTORE.

36

PV-WAVE User’s Guide

NOTE For adescription of these keywords, see the description of RESTORE in
Chapter 2, Function and Procedure Reference in the PV-WAVE Reference.

Things to Remember when Restoring Files
Situations in which the contents of the file will not be restored are;

* When attempting to restore a structure variabl e, the structure of the saved vari-
able must either not exist, or must agree with the existing structure definition.
If the structure is aready defined and does not match, RESTORE issues an
error message, skips the variablein question, and continues with the next vari-
ablein thefile. This also applies to system variables.

NOTE Visual Numerics, Inc., reserves the right to change the structure of
PV=WAV E system variabl es, although such changes are not anticipated. Generally,
there islittle need to save system variables, so this restriction is not a problem.

* Read-only system variables are not restored. RESTORE quietly skips over
such variablesin thefile unless the Verbose keyword is present. In this case an
informative message isissued as the variable is skipped.

Printing Your Work

PV=WAV E provides several methods of printing graphics. The easiest method isto
print directly from the window in which the graphics are displayed, but there are

other ways to print, too.

PV=WAV E supports hardcopy output to various plotters and printers, including al
the hardcopy devices supported by Windows. PV=WAVE also includes some of its
own hardcopy drivers; these drivers provide you with options not available when

you print via Windows.

Printing the Contents of a Graphics Window

The Print function on the graphics window Control menu lets you print the con-
tents of the graphics window.

Thelocation of the graphics window Control menu button for aWindows NT win-
dow is shown in the following figure. On Windows 95, the Control menu isin the
same location.

Printing Your Work 37

Control menu button =| WAVE 0 ~|=

Graphics window

Figure 3-4 PV=WAVE graphics window (Windows NT version). Click the Control menu but-
ton to display this window’s Control menu.

When you select Print, the Print dialog box appears. Use thisdial og box to specify
printing options and to print your graphics. Refer to online help for detailed infor-
mation on using the Print dialog box.

In addition, you can print the contents of a graphics window using the WPRINT
command. For detailed information on WPRINT, see its description in the PV-
WAVE Reference.

Printing PV-WAVE Help Topics

Any help topic can be easily printed by displaying it in the Help window and then
selecting File=>Print Topic. The help topic printout will be sent to your com-
puter’s default printer.

To change your default printer, use the Print Manager window provided by
Windows.

Using the PV-WAVE Output Drivers

Output drivers allow you to output graphicsin formats that can be exchanged with
other applications or sent to an output device. The following table lists the output
drivers supported by PV=WAVE.

38

PV-WAVE User’s Guide

Supported Output Devices and Window Systems

Device Name Description

NULL No graphic output

CGM Computer Graphics Metafile generator

HP Hewlett-Packard Graphics Language (HPGL) plotters
PCL Hewlett-Packard Printer Control Language (PCL)
PM Pixel map

PS PostScript devices

REGIS Regis graphics output devices

TEK Tektronix or compatible terminals

WIN32 Microsoft Windows WIN32 driver

WMF Windows metafile

X X Window System

z Z-buffer device

The following steps apply no matter which output driver you select:

» Sdlect the output device, such asPSor CGM, using the SET_PLOT command.
Thisautomatically opens afile. (Note that the important last step in this proce-
dure will be to close the output file.)

» Configure the output device to your specifications with keywords to the
DEVICE procedure.

» Issue the commands that will display your graphic output, such as PLOT or
SHADE_SURF.

» Close the output file using the Close keyword to the DEVICE procedure.

Seethe PV-WAVE Referencefor information onthe DEVICE and SET_PLOT com-
mands and examples of their use.

Exporting Graphics to a File

Usethe Export Graphics function to save the contents of a graphicswindow in a
file. When you choose this option, you see a dialog box that lets you select afile-
name and directory.

WWRITE_META and WWRITE_DIB are command line functions that also save
the contents of agraphics window in afile. For information on these functions, see
their descriptions in the PV-WAVE Reference.

Printing Your Work 39

Using the Clipboard

You can use the clipboard to copy graphics between PV=WAV E graphicswindows
and between PV=WAV E and other graphics applications.

You can use the Clipboard to exchange graphics between PV=WAVE and other
applicationsif the other application supports the file formats:

» Device Independent Bitmap (DIB) or

» Enhanced-format metafile (EMF).

NOTE Many 16-bit Windows applications do not support enhanced metafiles.

Copying Graphics to the Clipboard

Select Copy to Clipboard to copy the graphicsin the graphics window to the Clip-
board. Graphics on the Clipboard can be pasted into another PV=WAV E graphics
window, or into any graphicsapplication that allowsinteraction with the Clipboard.
For example, you can paste PV=WAV E graphics from the Clipboard into a
Microsoft Paintbrush window.

Pasting Graphics from the Clipboard

Select Paste from Clipboard to paste the graphics on the Clipboard into a
PV=WAV E graphics window. For example, you can copy graphics from a
Microsoft Paintbrush window to the Clipboard, and then paste the graphics into
PV-WAVE.

40

PV-WAVE User’s Guide

Displaying 2D Data

PV=WAVE provides routines for plotting datain avariety of ways. These routines
allow general X versusY plots, contouring, mesh surface plots, perspective
plotting, and data clipping in an extremely flexible manner without requiring you
towrite complicated programs. These plotting and graphic routines are designed to
allow easy visualization of data during data analysis.

Optional keyword parameters and system variables allow straightforward custom-
ization of the appearance of the results: (i.e., specification of scaling, axis style,
colors, etc.).

This chapter contains numerous examples of scientific graphicsin which one
variableis plotted as a function of another. The procedures that display three-
dimensional data, CONTOUR and SURFACE, are explained in detail in Chapter
5, Displaying 3D Data. Procedures used to display and process images are
discussed in Chapter 6, Displaying Images.

Summary of 2D Plotting and General Graphics Routines

A list of the 2D plotting procedures described in this chapter isfound in . In
addition, a summary list of graphics procedures often used with the plotting
proceduresis listed.

41

Customizing Plots with Keyword Parameters

The plotting procedures are designed to produce acceptable results for most
applications with aminimum amount of effort. The plotting and graphics keyword
parameters and system variables, which are described in allow you to customize
your graphics output. Examplesin this chapter show how to use many of the major
keywords and system variables used to modify 2D graphics.

Keyword Correspondence with System Variables

Many of the plotting keyword parameters correspond directly to fieldsin the
system variables !B, X, 1Y, 1Z, or IPDT. When you specify a keyword parameter
name and value in a call, that value affects only the current call — the
corresponding system variablefield isnot changed. Changing the value of asystem
variablefield changesthe default for that particular parameter and remainsin effect
until explicitly changed. The system variablesand the corresponding keywordsthat
are used to modify graphics are described in, and in Chapter 4, System Variables,
in the PV=WAVE Reference.

Example of Changing the Default Color Index

The color index controls the color of text, lines, axes, and datain 2D plots. By
default, the color index is set in the 'P.Color field of the ! P system variable. This
default value is normally set to the number of available colors minus 1. (If your
system supports 256 colors, !P.Color is set to 255 by default.)

Using the Color Keyword Parameter

You can override this default value at any time by including the Color keyword in
the graphics routine call. For example, to set the color of a plot to color index 12,
enter:

PLOT, X, Y, Color = 12

Because keyword parameters only modify the current function or procedure call,
future plots are not affected.

Changing the !P.Color System Variable

To change the color for all plots produced during the current session, you can
modify !P.Color. For example, to change the default color index to 12, enter:

IP.Color = 12

42

PV-WAVE User’s Guide

Interpretation of the Color Index

The interpretation of the color index varies among the devices supported by
PV=WAVE. With color video displays, thisindex selectsacolor (normally an RGB
triple) stored in a device table. You can control the color selected by each color
index with the TVLCT procedure which |oads the device color tables. TVLCT is
described in the PV-WAVE Reference.

Other devices have afixed color associated with each color index. With plotters,
for example, the correspondence between colors and color index is established by
the order of the pensin the carousel.

Three Graphics Coordinate Systems

You may specify coordinates in data, device, or normal coordinate systems. These
systems are explained in the following sections.

Almost all the graphics procedures will accept parameters in any of these coordi-
nate systems. Most procedures use the data coordinate system by default. Routines
beginning with the letters TV are notable exceptions. They use device coordinates
by default. You can explicitly specify the coordinate system by including one of the
keyword parameters Data, Device, or Normal in the call. For example:

PLOT, X, y, /Normal

Data Coordinate System

The data coordinate system is the system established by the most recent PLOT,
CONTOUR, or SURFACE call. This system usually spans the plot window, the
area bounded by the plot axes, with arange identical to the range of the plotted
data. The system may have two or three dimensions, and may be linear, logarith-
mic, or semi-logarithmic.

Datais the default coordinate system for most graphics procedures.

Device Coordinate System

The device coordinate system is the physical coordinate system of the selected
plotting device. Device coordinates are integers, ranging from (0,0) at the bottom-
left corner, to (Vy—1, V|, — 1) at the upper-right corner. V, and V, are the number of
columns and rows addressabl e by the device.

Three Graphics Coordinate Systems 43

Normal Coordinate System

Thenormalized coordinate system rangesfrom (0.0, 0.0) to (1.0, 1.0) over thethree
axes.

Coordinate System Conversion

This section describes how PV=WAV E converts from one coordinate system to
another.

The system variables !D, !P, !X, 1Y, and ! Z contain the information necessary to
convert from one coordinate system to another. The relevant fields of these system
variables are explained below, and formulas are given for conversionsto and from
each coordinate system. Three-dimensional coordinates are discussed in Chapter
5, Displaying 3D Data.

In the following discussion, D is adata coordinate, N is a normalized coordinate,
and Risaraw device coordinate.

Thefields!D.X_VSizeand !D.Y_VSize always contain the size of the visible area
of the currently selected display or drawing surface. Let V, and V, represent these
two sizes.

Thefield IX.S, isatwo-element array that contains the parameters of the linear
equation converting data coordinates to normalized coordinates. ! X.S(0) isthe
intercept, and ! X.S(1) isthe slope. IX.Typeis O for alinear x—axis, and is 1 for a
logarithmic x—axis. The y— and z-axes are handled in the same manner, using the
system variables!Y and ! Z.

With the above variables defined, the two-dimensional coordinate conversions for
the x coordinate may be written as follows:

D, = Data coordinate
N, = Normalized coordinate
R, = Device coordinate
V, = Device X size, in device coordinates
X; =1X.S(i), scaling parameter
Datato Normal conversion

N = Xo+ X, Dy linear
Xy + X;logD,, logarithmic

PV-WAVE User’s Guide

Datato Device conversion
[Vx(Xo * X1Dy) linear
* V(Xo+ X;logD,) logarithmic

Normal to Deviceconversion R, =N,V,

Normal to Data conversion
D = (Ny=Xo)/ Xy linear
X 10(N«—X%o)/X1 |ogarithmic

Device to Data conversion
D = (Rx/vx_ XO)/Xl linear
X 10(R/Vx=X0)/ %1 |ogarithmic

Deviceto Normal conversion N, =R, /V,

The y—and z—axis coordinates are converted in exactly the same manner, with the
exception that there is no z device coordinate and logarithmic z-axes are not
permitted.

Drawing X Versus Y Plots

This section illustrates the use of the basic x versus y plotting routines, PLOT and
OPLOT.

The PLOT procedure produces linear-linear plots. The procedures PLOT_|0O,
PLOT_Ol, and PLOT_OO areidentical to PLOT, except they produce linear-log,
log-linear, and log-log plots, respectively.

Datafromthe U.S. Scholastic Aptitude Test (SAT), from theyears 1967, 1970, and
from 1975 to 1983, are used in the following examples.

NOTE Variables defined in the following examples are used in later examplesin
this chapter.

Drawing X Versus Y Plots 45

Producing a Basic XY Plot

The following statements create and initialize the variables VERBM, VERBF,
MATHM, and MATHF, which contain the verbal and math scores for males and
females for the 11 observations:

VERBM = [463, 459, 437, 433, 431, 433, $
431, 428, 430, 431, 430]

VERBF = [468, 461, 431, 430, 427, 425, $
423, 420, 418, 421, 420]

MATHM = [514, 509, 495, 497, 497, 494, $
493, 491, 492, 493, 493]

MATHF = [467, 465, 449, 446, 445, 444, S
443, 443, 443, 443, 445]

A vector in which each element contains the year of the score is constructed with
the statement:

YEAR = [1967, 1970, INDGEN(9) + 1975]

The PLOT procedure, which produces an x versusy plot on a new set of axes,
requires one or two parameters: a vector of y—values, or avector of x-valuesfol-
lowed by a vector of y—values. Figure 4-1 is produced using the statement:

PLOT, YEAR, VERBM

]
=1
a

/

& [TTTTTTTTT

@

1 1 1 |
1970 1875 1980 1985

Figure 4-1 —Initial 2D plot.

TIP You can abort any of the higher-level graphics procedures (e.g., PLOT,
OPLOT, CONTOUR, and SURFACE) by typing Control-C.

46

PV-WAVE User’s Guide

Scaling the Plot Axes and Adding Titles

The fluctuations in the data are hard to see because the scores range from 428 to
463, and the plot’sy—axisis scaled from 0 to 500. Two factors cause this effect. By
default, PV=WAVE sets the minimum y—axis value of linear plotsto O if they data
are all positive. The maximum axis value is automatically set from the maximum
y data value. In addition, PV=WAV E attempts to produce from 3 to 6 tick mark
intervals that are in increments of an integer power of 10times 2, 2.5, 5, or 10. In
this example, this rounding effect causes the maximum axis val ue to be 500, rather
than 463.

Using YNozero to Scale the Y-Axis

The YNozero keyword parameter inhibits setting the y—axis minimum to O when
given positive, non-zero data. Figure 4-2 illustrates the data plotted using this
keyword. The y—axis now ranges from 420 to 480, because PV=WAVE selected 3
tick mark intervals of 20.

You can make /YNozero the default in subsequent plots by setting bit 4 of
IY.Styleto 1, (!Y.Style = 16).

Other bitsin the Stylefield of the axissystem variables! X, 1Y, and ! Z are described
in the . Briefly: Other bitsin the Style field extend the axes, (providing a margin
around the data), suppressthe axis and its notation, and suppress the box-style axes
by drawing only aleft and bottom axis.

Adding Titles

The Title, XTitle, and YTitle keywords are used to produce axistitlesand amain
title in the plot shown in Figure 4-2. This figure was produced with the statement:
PLOT, YEAR, VERBM, /YNozero, $

Title = ’'Verbal SAT, Male’, $
XTitle = 'Year’, YTitle = ’Score’

Drawing X Versus Y Plots 47

werbal SIAT. hdale

480 -

Score

440 -

420 L 1 1
1965 1970 1875 1980 1983
fear

Figure 4-2 Properly scaled plot with added title annotation

Specifying the Range of the Axes

The range of the x—, y—, or z—axes can be explicitly specified with the XRange,
YRange, and ZRange keyword parameters. The argument of the keyword parameter
is atwo-element vector containing the minimum and maximum axis values.

For example, if we wish to constrain the x—axis to the years 1975 to 1983, the fol-
lowing keyword parameter isincluded in the call to PLOT:

XRange = [1975, 1983]

The effect of the YNozero keyword, explained in the previous section, isidentical
to that obtained by specifying the following YRange keyword parameter in the call
to PLOT:

YRange = [MIN(Y), MAX(Y)]

Specifying Exact Tick Intervals with XStyle = 1

As explained in the previous section, PV=WAVE attempts to produce even tick
intervals, and the axis range selected by PV=WAV E may be dlightly larger than that
given with the XRange, YRange, and ZRange keywords. To abtain the exact speci-
fied interval, set the x—axis style parameter to 1 (XStyle = 1).

The call combining all these optionsis:

PLOT, YEAR, VERBM, /YNozero, $

Title = 'Verbal SAT, Male’, $
XTitle = 'Year’, YTitle = ’'Score’, $
XRange = [1975, 1983], /XStyle

48

PV-WAVE User’s Guide

Figure 4-3 illustrates the result.

Werbal SAT, Male
T T T T T

428 L L I

1978 1978 1380 1982
‘Yaar

Figure 4-3 Plot with x—axis range of 1975 — 1983.

Plotting Additional Data on the Same Axes

Additional data may be added to existing plots with the OPLOT procedure. Each
call to PLOT establishesthe plot window (the region of the display enclosed by the
axes), the axis types (linear or log), and the scaling. Thisinformation is saved in
the system variables !P, X, and 'Y, and used by subsequent callsto OPLQOT.

It may be useful to change the color index, linestyle, or line thickness parameters
in each call to OPLOT to distinguish the data sets. For atable describing the line-
style associated with each index, see the description of the ! PLinestyle system
variablein .

Figure 4-4 illustrates a plot showing al four data sets, VERBF, VERBM, MATHF,
and MATHM. Each data set except the first is plotted with a different line style and
is produced by a call to OPLQOT.

Drawing X Versus Y Plots 49

SaT Slcores

480

420

Score
+
&
a
LI B e s e B S B

)
= T T T T T
&

a0l ! L !
1988 1970 1975 1980
‘fear

Figure 4-4 Overplotting using different line styles.

Inthisexample, an 11-by-4 array called al1pts isdefined which containsall the
scores for the four categories using the array concatenation operator. Once this
array is defined, the array operators and functions can be applied to the entire data
set, rather than explicitly referencing the particular score.

Figure 4-4 is produced with the statements:

allpts = [[verbf], [verbm], [mathf], [mathm]]
; Make an (n, 4) array containing the four score vectors.
PLOT, year, verbf, YRange=[MIN(allpts), $
MAX (allpts)]

; Plot first graph. Set the y—axis min and max from the min and
; max of all data sets. Default line style is 0. (The title keywords
; have been omitted from this example for clarity.)

FOR i=1, 3 do OPLOT, year, allpts(*, i), Line = i
; Loop for the three remaining scores, varying the line style.

Plotting Date/Time Axes

Using Date/Time functions, you can create Date/Time variables and automatically
plot multiple Date/Time axes. For detailed information on manipulating and
plotting Date/Time data, see Chapter 8, Working with Date/Time Data.

50

PV-WAVE User’s Guide

Annotating Plots

An obvious problem with Figure 4-4 isthat it lacks |abels describing the different
lines shown. To annotate a plot, select an appropriate font and then use the
XYOUTS procedure.

Selecting Fonts

You can use software or hardware generated fonts to annotate plots. Chapter 10,
Using Fonts explains the difference between these types of fonts and the
advantages and disadvantages of each.

The annotation in Figure 4-5 uses the PostScript Times-Roman font. Thisis
selected by first setting the default font, ! PFont, to the hardware font index of O,
and then calling the DEVICE procedure to set the Times-Roman font:

!P.Font = 0
SET_PLOT, ’'ps’
DEVICE, /Times

Other PostScript fonts and their bold, italic, oblique and other variants are
described in the PV-WAVE Reference.

Using XYOUTS to Annotate Plots

You can add labels and other annotation to your plots with the XYOUTS proce-
dure. The XYOUTS procedure is used to write graphic text at agiven location (X,
Y):

XYOUTS, x, Y, ‘string’

For a detailed description of XYOUTS and its keywords, see the
PV-WAVE Reference. For other tips on using XYOUTS, see Clipping PV-WAVE
Graphics on page 67.

Figure 4-5 illustrates one method of annotating each graph with its name. The plot
is produced in the same manner as was Figure 4-4, with the exception that the
x-axisrangeisextended to theyear 1990 to allow room for thetitles. To accomplish
this, the keyword parameter XRange = [1967, 1990] isaddedtothecall to
PLOT. A string vector, NAMES, containing the names of each scoreisalso defined.
Asnoted in the previous section, the PostScript Times-Roman font was sel ected for
this example.

The annotation in Figure 4-5 is produced using the statements:

names = ['Female Verbal’, ’'Male Verbal’, $
'Female Math’, 'Male Math’]

; Vector containing the name of each score.

Drawing X Versus Y Plots 51

nl = N_ELEMENTS (year) - 1
; Index of last point.

FOR 1=0,3 do XYOUTS, 1984, allpts(nl,i), names(i)
; Append the title of each graph on the right.

SAT Scoras
—

" T — Male Math

A80— —

o
g 460 —
@
L .. Female Math
40— —
[Male Verbal
10l T e Female Verbal _
a0 L L L ! 1
1885 1670 1975 1880 1885 1380

Year

Figure 4-5 Example of annotating each line. The font used is the hardware-generated Post-
Script Times-Roman font.

Plotting in Histogram Mode

You can produce a histogram-style plot by setting the Psym keyword to 10 in the
PLOT procedure call:

Psym = 10

This connects data points with vertical and horizontal lines, producing the
histogram.

Figure4-6illustratesthis by comparing the distribution of the normally distributed
random number function (RANDOMN), to the theoretical normal distribution:

(Zn)—l/ze—xz/z

Thisfigureis produced using the following statements:

X = FINDGEN(200) / 20. - 5.
; Generate 200 values ranging from -5 to 5.
Y = 1 / SQRT(2. * IPI) * EXP(-X"2 / 2) *(10. / 200)

; Theoretical normal distribution, integral scaled to one.

H = HISTOGRAM (RANDOMN (Seed, 2000), $
BINSIZE = 0.4, min = -5., max = 5.)/2000.

52

PV-WAVE User’s Guide

; Approximate a normal distribution with RANDOM and then
; form the histogram.

PLOT, FINDGEN(26) * 0.4 - 4.8, H, PSYM = 10
; Plot the approximation using “histogram mode”.
OPLOT, X, Y*8.
; Overplot the actual distribution (see Figure 4-6).

020 T T T
0150 —
AL —

005 —

0.00 L L I L

Figure 4-6 Plotting in histogram mode.

Using Different Marker Symbols

Each data point may be marked with a symbol and/or connected with lines. The
value of the keyword parameter Psym sel ectsthe marker symbol. Psymisdescribed
in detail in Chapter 3, Graphics and Plotting Keywords, in the PV=-WAVE
Reference, .

For example, avalue of 1 marks each data point with the plussign, 2 isan asterisk,
etc. Setting Psymto minusthe symbol number marks the points with asymbol and
connectsthem with lines. For example, avalue of —1 marks pointswith aplussign
and connects them with lines.

Note also that setting Psymto avalue of 10 produces histogram-style plots, as
described in the previous section.

Frequently, when data points are plotted against the results of afit or model,
symbols are used to mark the data points while the model is plotted using aline.
Figure 4-7 illustrates this, fitting the male verbal scores to a quadratic function of
theyear. The POLY _FIT function isused to calculatethe quadratic. The statements
used to construct this plot are:

COEFF = POLY FIT(YEAR, VERBM, 2, YFIT)

Drawing X Versus Y Plots 53

; Use the POLY_FIT function to obtain a quadratic fit.

PLOT, YEAR, VERBM, /YNozero, Psym = 4, S
Title = ’'Quadratic Fit’, $
XTitle = ’'Year’, YTitle = ’'SAT Score’
; Plot the original data points with Psym = 4, for
; diamonds (Figure 4-7 (a)).

OPLOT, YEAR, YFIT
; Overplot the smooth curve using a plain line (Figure 4-7 (b)).

Quadratic Fit Quadratic Fit
T T 480 T T

480~

SAT Seere

440

420 L L L +20 L L L
1985 1970 1975 1980 1953 1965 1870 1875 1980 1985
‘qar sar

Figure 4-7 (a) Plotting with predefined marker symbols, and (b) with user-defined symbols.

Defining Your Own Marker Symbols

The USERSY M procedure allows you to define your own symbols by supplying
the coordinates of the lines used to draw the symbol. The symbol you define may
be drawn using lines, or it may befilled using the polygon filling operator.
USERSY M accepts two vector parameters: a vector of x—values and a vector of
y-values.

The coordinate system you use to define the symbol’s shape is centered on each
data point and each unit is approximately the size of a character. For example, to
definethe simplest symbol, aone-character wide dash, centered over the data point:

USERSYM, [-.5,.5],[0,0]

The color and line thickness used to draw the symbols are a so optional keyword
parameters of USERSY M.

Figure 4-7 (b) illustrates the use of USERSY M to define a new symbol, afilled
circle. It is produced in exactly the same manner as the example in the previous
section, with the exception of the addition of the following statements that define
the marker symbol and useit.

PV-WAVE User’s Guide

A = FINDGEN(16) * (!'Pi * 2 / 16.)
; Make a vector of 16 points, a; = 2ri / 16.
USERSYM, COS(A), SIN(a), /Fill
; Define the symbol to be a unit circle, with 16 points, set the filled flag.

PLOT, YEAR, VERBM, /YNozero, Psym = 8,
; As in the previous section, but use symbol index 8 to select user-defined symbols.

Using Color and Pattern to Highlight Plots

Many scientific graphs use region filling to highlight the difference between two or
more curves (i.e., to illustrate boundaries, etc.). Given alist of vertices, the
procedure POLYFILL fillstheinterior of an arbitrary polygon. The interior of the
polygon may be filled with a solid color or, with some devices, a user-defined
pattern contained in arectangular array.

Windows USERS The Pattern keyword is not available for the POLY FILL
procedure.

Figure4-8illustratesasimpleexample of polygonfilling by filling theregion under
the male math scores with a color index of 75% the maximum, and then filling the
region under the male verbal scores with a’50% of maximum index. Because the
mal e math scores are always higher than the verbal, the graph appears as two
distinct regions.

Male SAT Scores
520 — T

Math

480|- 7

Figure 4-8 Filling regions using POLYFILL.

Drawing X Versus Y Plots 55

The following discussion describes the program that produced Figure 4-8. First, a
plot axisisdrawn with no data, using the Nodata keyword. The minimum and max-
imum y-values aredirectly specified with the YRange keyword. Becausethey—axis
range does not always exactly include the specified interval (see Scaling the Plot
Axes and Adding Titles on page 47), the variable MINVAL, is set to the current
y-axisminimum, !'Y.Crange(0). Next, the upper math score region is shaded with a
polygon containing the vertices of the math scores, preceded and followed by
points on the x—axis, (YEAR (0) , MINVAL), and (YEAR(n - 1), MINVAL).

The polygon for the verbal scoresis drawn using the same method with a different
color. Finally, the XYOUTS procedure is used to annotate the two regions.

IP.Font = 0
; Use hardware fonts.

DEVICE, /Helvetica
; Set font to Helvetica.
PLOT, year, mathm, YRange = [MIN(verbm), $

MAX (mathm)], /Nodata, Title = $
'Male SAT Scores’

; Draw axes, no data, set the range.

pxval = [year(0), year, year(nl)]
; Make a vector of x—values for the polygon, by duplicating the first
; and last points.
minval = !Y.Crange (0)
; Get y—value along bottom x—axis.
POLYFILL, pxval, [minval, mathm, minval]l, $
COL = 0.75 * !D.N Colors
; Make a polygon by extending the edges of the math score
; down to the x—axis.
POLYFILL, pxval, [minval, verbm, minval], COL = 0.50 * !D.N Colors
; Same with verbal.

XYOUTS, 1968, 430, ’'Verbal’, Size = 2
; Label the polygons.

XYOUTS, 1968, 490, ’'Math’, Size = 2

Drawing Bar Charts

Bar charts are used in business-style graphics and are useful in comparing a small
number of measurements within afew discrete data sets. PV=WAVE can produce
many types of business-style plots with alittle effort.

56

PV-WAVE User’s Guide

The following exampl e produces a bar-style chart showing the four SAT scores as
boxes of differing colorsor shading. The program used to draw Figure 4-9 isshown
below and annotated. A procedure called BOX isdefined which draws abox given
the coordinates of two diagonal corners.

SAT Scores
T T

Male Math
Female Math

480

Male Verbal
I

420

Female Verbal
|
00 |
1970 1975 1860

1965 1985

o
m||||\\||||||\\|||||\\||
=1

Figure 4-9 Bar chart drawn with POLYFILL.

Asin the previous example, the PLOT procedure is used to draw the axes and
establish the scaling using the Nodata keyword.

PRO BOX, x0, y0, x1, yl, color
; Draw a box, using polyfill, whose corners are (x0, y0), and (x1,y1).

POLYFILL, [x0,x0,x1,x1], [yO,yl,y1l,y0], s
col = color

END

colors = 64 * INDGEN(4) + 32
; Make a vector of colors for each score.

PLOT, year, mathm, YRange = [MIN(allpts), $
MAX (allpts)], Title = ’SAT Scores’, $
/Nodata, XRange = [year(0), 1990]

; Use PLOT to draw the axes and set the scaling.
; Draw no data points, explicitly set the x— and y—ranges.

minval = !Y.Crange (0)

; Get the y—value of the bottom x-axis.
del = 1./5.

; Width of bars in data units.

FOR iscore = 0,3 DO BEGIN
; Loop for each score.

Drawing X Versus Y Plots 57

yannot = minval + 20 *(iscore+1)
; Annotation of y—value. Vertical separation is 20 data units.

XYOUTS, 1984, yannot, names (iscore)
; Label for each bar.
BOX, 1984, yannot-6, 1988, yannot-2, $
colors (iscore)
; Bar for annotation.

xoff = iscore * del - 2 * del
; Vertical bar x—offset for each score.
FOR iyr = 0, N_ELEMENTS (year)-1 DO $
BOX, year (iyr)+xoff, minval, year(iyr)$
+ xoff+del, allpts(iyr, iscore), $
colors (iscore)

; Draw a vertical box for each year's score.

ENDFOR

Controlling Tick Marks

You have almost complete control over the number, style, placement, and annota-
tion of the tick marks. The following plotting keywords are used to control tick
marks:

Gridstyle XTicklen Y Tickformat ZMinor
Tickformat XTickname Y Ticklen ZTickformat
Ticklen XTicks Y Tickname ZTicklen
XGridstyle XTickv YTicks ZTickname
XMinor Y Gridstyle Y Tickv ZTicks
XTickformat Y Minor ZGridstyle ZTickv

For detailed descriptions of these keywords, see,.

Example 1: Specifying Tick Labels and Values

Figure 4-10 isabar chart illustrating the direct specification of the x—axistick val-
ues, number of ticks, and tick names. Building upon the BOX program described
in the previous section, this program shows each of the four scores for the year
1967, thefirst year in the data. The BOX procedure is used to draw arectangle for
each score. Using the same data and variables from that example, the program for
specifying tick labels and valuesis as follows.

xval = FINDGEN (4)/5. + .2

58

PV-WAVE User’s Guide

; Tick x—values, 0.2, 0.4, 0.6, 0.8.

yval = [verbf (0), verbm(0), mathf (0), mathm(0)]

; Make a vector of scores from the first year,
; corresponding to the names vector from the previous example.

PLOT, xval, yval, /YNozero, XRange = [0,1],$
XTickv = xval, XTicks = 3, S
XTickname = names, /Nodata, Title = §
'SAT Scores, 1967’
; Make the axes with no data. Force x—range to [0,1],
; centering xval, which also contains the tick values. Force
; three tick intervals making four tick marks. Specify the
; tick names from the names vector.

FOR i=0, 3 DO BOX, xval(i) - .08, S
1Y.Crange (0), xval(i)+0.08, yval(i), 128

; Draw the boxes, centered over the tick marks.
; IY.Crange(0) is the y—value of the bottom x—axis.

SAT Scores, 1967
T T

&

b
23
=]

b
o
=]

T T IO O T AT T T [T

480
Femnale Werbal Male Verbal Female Math Male Math

Figure 4-10 Controlling x—axis tick marks and their annotation.

Example 2: Specifying Tick Lengths

Figure 4-11 illustrates the effects of changing the Ticklen keyword. The l€eft plot
shows afull grid produced with tick mark lengths of 0.5. Theright plot shows out-
ward-extending tick marks produced by setting the Ticklen keyword to —0.02.
Outward extending ticks are useful in that they do not obscure the datainside the
window. These two plots were produced with the following code:

precip = [... 1]
; Define 12 monthly precipitation values.

temp = [... 1]
; Define 12 monthly average temperature.

Drawing X Versus Y Plots 59

month = ['Ja’, 'Fe’, 'Ma’, 'Ap’, 'Ma’, $
*Ju’, 'Ju’, 'Au’, ’'Se’, 'Oc’, 'No’, 'De’]
; Define names of months.
day = FINDGEN(12) * 30 + 15
; Vector containing the approximate day number of the middle of each month.
PLOT, day, precip, XTicks = 11, XTickname = $
month, Ticklen = 0.5, XTickv = day, $
Title = 'Average Monthly Precipitation’, $ XTitle = 'Inches’,
Subtitle = ’'Denver’
; Plot, setting tick mark length to full, and setting the
; number, position and labels of the ticks.

PLOT, day, precip, XTicks = 11,XTickname = $

month, Ticklen = -0.02, XTickv = day, $
Title = ’'Average Monthly Precipitation’, $
XTitle = 'Inches’, Subtitle = ’'Denver’

; As above, setting tick mark length for outside ticks.

TIP UsetheGridstyle, XGridstyle, YGridstyle, and ZGridstyl e keywordsto change
the linestyle of tick marks from solid to dashed, dotted, or other styles. One useis
to create a dotted or dashed grid on the plot region. To do this, first set the Ticklen
keyword to 0.5, and then set the Gridstyle keyword to the value of the linestyle you
want to use. For moreinformation on using the Gridstyle keywords, see, Volume 3.

Average Monthly Precipitation Average Monthly Pracipitation

2.0F . 2.04

1.5F : 1.5

1.0f : 1.0

0.5 [~ 0.5

0.oF 3 0.0

Ja Fa Mabp Ma Ju Ju Au Sa Oc Mo De Ja Fa Ma Ap Ma Ju Ju Au Sa Oc Mo Da

Inzhes: Inches
Cenwver Cenwver

Figure 4-11 Full grid produced with tick marks (right) and outward-extending tick marks
(left).

Example 3: Specifying Tick Label Formats

The XTickformat, YTickformat, and ZTickformat keywords let you change the
default format of tick labels. Thesekeywordsusethe F (floating-point), I (integer),
and E (scientific notation) format specifiersto specify the format of thetick labels.

60

PV-WAVE User’s Guide

These format specifiers are similar to the ones used in FORTRAN and are dis-
cussed in the PV-WAVE Reference.

For example:

PLOT, mydata, XTickformat='(F5.2)’

The resulting plot’stick labels are formatted with atotal width of five characters
and carried to two decimal places. As expected, the width field expands automati-

cally to accommodate larger values. For example, the x—axistick labelsfor thisplot
might ook like this:

40.00 400.00 4000.00 40000.00

You can easily reformat thelabelsin scientific notation using the E format specifier.
For example:

PLOT_ OO, mydata, YTickformat=’ (E6.2)"

The resulting y—axistick labels for this plot might ook like this:

1.00e-08 1.00e-06 1.00e-04 1.00e-02

Like many of the keywords used with the plotting procedures, corresponding sys-
tem variables allow you to change the normal defaults. The corresponding system
variables for the Tickformat keywords are: ! X.Tickformat, !'Y.Tickformat, and

1Z.Tickformat. The system variable ! P.Tickformat |letsyou set thetick |abel format
for all three axes.

NOTE Only the I (integer), F (floating-point), and E (scientific notation) format
specifiers can be used with the Tickformat keywords. Also, you cannot place a
guoted string inside atick format. For example, (' <’, F5.2, ’>’) isan
invalid Tickformat specification.

Drawing Multiple Plots on a Page

Plots may be grouped on the display or page in the horizontal and/or vertical direc-
tions using the IPMulti system variable field. PV=WAVE sets the plot window to
produce the given number of plots on each page and moves the window to a new
sector at the beginning of each plot. If the pageisfull, itisfirst erased. If morethan
two rowsor columns of plotsare produced, PV=WAV E decreasesthe character size
by afactor of 2.

IPMulti controls the output of multiple plots and is an integer vector in which:

* IPMulti(0) — The number of empty sectors remaining on the page. The
display iserased if thisfield is O when anew plot is begun.

Drawing X Versus Y Plots 61

e IPMulti(1) — The number of plots across the page.
e IPMulti(2) — The number of plots per pagein the vertical direction.

For example, to stack two plotsvertically on each page specify the following value
for IPMuilti.

'P.Multi = [0,1,2]

Note that the first element, |PMulti(0), is set to zero to cause the next plot to begin
anew page. To make four plots per page, with two columns and two rows:
'P.Multi = [0,2,2]

Figure 4-12 illustrates the two rows and two columns format. Use the following
command to reset the display to the default setting of one plot per page.

!'P.Multi = 0

Avorage Monthly Pracipitation Avorage Monthly Pracipitation

2.5F ; 2.5

2.0F . 2.0

15E] 1.5

1.0f] 1.0

&55 M? UE-ff

0.0k E 0.0 -

Ja Fa Mahp Ma Ju Ju Au 3e Oc Mo De Ja Fa Mafp Ma Ju Ju Au Se Oc Mo De
Inzhes Inches
Denver Denver
et 100

P JaFaMa e Ul ALEs So e De
£ 125y 50
g 70f 120
< Bof A
Vi 15 y -100 00
w 50} 1oL
o n
5, 40 i5 @
¥ o
&30 . e -1

0 200 400

Day of Year
Denver Average Temperature Polar Plot

Figure 4-12 Multiple plots per page.

PV-WAVE User’s Guide

Plotting with Logarithmic Scaling

The XType, YType, and ZType keywords can be used with the PLOT routine to get
any combination of linear and logarithmic axes. In addition, logarithmic scaling
may be achieved by calling PLOT _IO (linear x—axis, log y—axis), PLOT_OI (log X,
lineary), or PLOT_OO (log x, log y). The OPLOT procedure usesthe same scaling
and transformation as did the most recent plot.

Figure4-13illustratesthe use of PLOT_|Oto makealinear-log plot. It isproduced
using the following statements:

X = FLTARR (256)
; Create data array.

X(80:120) = 1
; Make a step function.

FREQ = FINDGEN (256)

FREQ = FREQ < (256-FREQ)
; Make a filter symmetrical about x = 64.

A

FIL = 1. / (1+(FREQ / 20) "2)
; A 2nd order Butterworth, with acutoff frequency = 20.
PLOT IO, FREQ, ABS(FFT(X,1)), XTitle = $
'Relative Frequency’, YTitle = $
'Power’, XStyle =1
; Plot with a logarithmic x—axis. Use exact axis range.

OPLOT, FREQ, FIL

100.00

10.00

Fowar

1.00

10

Q.01

1 L L L L
a0 00
Relative Freguency

o

Figure 4-13 Logarithmic scaling of a second order Butterworth filter.

Drawing X Versus Y Plots 63

Specifying the Location of the Plot

The plot data window isthe region of the page or screen enclosed by the axes. The
plot region is the box enclosing the plot data window and the titles and tick
annotation. Figure 4-14 illustrates the relationship of the plot data window, plot
region, and the entire device area (or window if using a windowing device).

_Title: Sampla Plot |
1.0
0.6 - L
LY
E 0.6 .
B
< 04 -
>
0.2 1 F
0.0 Flot Dlata Wlnclimu . .
0.0 0.2 0.4 0.6 0.8 1.0
X fixig Title
Subtitle
Flot Region

otal Device Area

Figure 4-14 Relationship of the plot data window, plot region, and the device area.

These areas are determined by the following system variables and keyword
parameters, in order of decreasing precedence. Each of these keywords and system
variables are described in Chapter 3, Graphics and Plotting Keywords, in the
PV-WAVE Referenceand .

» Position keyword

» IPPosition system variable

* IPRegion system variable

e IPMulti system variable

« XMargin, YMargin, and ZMargin keywords

e IX.Margin, 'Y.Margin, and !Z.Margin system variables

64

PV-WAVE User’s Guide

Drawing Additional Axes on Plots

The AXIS procedure draws and annotates an axis. It optionally saves the scaling
established by the axis for use by subsequent graphics procedures. It may be used
to add additional axesto plots, or to draw axes at a specified position.

The AXISprocedure acceptsthe set of plotting keyword parametersthat governthe
scaling and appearance of the axes. In addition, the keyword parameters XAxis,
YAXis, and ZAxis specify the orientation and position (if no position coordinatesare
present), of the axis. The values of these parameters are: 0 for the bottom or left
axis, and 1 for the top or right. The tick marks and their annotation extend away
from the plot window. For example, specify YAXIS = 1 todraw ay-axisonthe
right of the window.

The optional keyword parameter Save saves the data-scaling parameters estab-
lished for the axis in the appropriate axis system variable, !X, 'Y, or | Z.

The call to AXISis:
AXISI[, % V], Z

where X, y, and optionally z specify the coordinates of the axis. By including the
appropriate keyword parameter (Device, Normal, or Data) you can specify a
coordinate system. The coordinate corresponding to the axis direction isignored
when specifying an x—axis, the x coordinate parameter isignored, but must be
present if there isay coordinate.

Drawing Additional Axes Example

Figure4-15illustratesusing AXISto draw axeswith adifferent scale, opposite the
main x— and y—axis.

Felort
Ja Fa Iila Ao Inla Ju U B e oo o O

T 80 325 4,
=

& FOf j20E
= BOF 1158
L i
w SOf ERTVE:Y
&
=R 1,1 i ¥
ESD g &

o 200 400

Day of Year
Denver Average Temperature

Figure 4-15 Plot containing axes with different scales, created with the AXIS procedure.

Drawing X Versus Y Plots 65

The plot is produced using PLOT with the bottom and left axes annotated and
scaled in units of days and degrees Fahrenheit, respectively. The XMargin and
YMargin keyword parameters are specified to allow additional room around the
plot window for the new axes. The keyword parametersxstyle = 8 and
YStyle = 8 inhibit drawing thetop and right axes.

Next, the AXIS procedureis called to draw thetop axis, (XAxis = 1), labeledin
months. Eleven tick intervals, with 12 tick marks are drawn. Each monthly tick
mark’s x—value is the day of the year of approximately the middle of the month.
Tick mark names come from the MONTH string array.

Theright y—axis, YAxis = 1,isdrawninthesamemanner. The new y—axisrange
is set by converting the original y—axis minimum and maximum values, saved by
PLOT in!Y.Crange, from Fahrenheit to Celsius, using the formula C = 5(F - 32) /
9. The keyword parameter YStyle = 1 forcesthe y—axisrangeto match the
given range exactly. The commands are:

PLOT, day, temp, /YNozero, Subtitle = $
'Denver Average Temperature’, $
XTitle = ’'Day of Year’, YTitle =
'Degrees Fahrenheit’, XStyle = 8,
YStyle = 8, XMargin = [8,8]1, $
YMargin = [4,4]

; Plot the data, omitting the right and top axes.

$
$

AXIS, XAxis = 1, XTicks = 11, XTickv = day, $
XTickname = month, XTitle = 'Month’, $
XCharsize = 0.7

; Draw the top x—axis, supplying labels, etc. Make the
; characters smaller so they will fit.
AXIS, YAxis = 1, YRange = $
(lY.Crange-32)*5. /9., YStyle =1, $
YTitle = ’'Degrees Celsius’

; Draw the right y—axis. Scale the current y—axis minimum
; values from Fahrenheit to Celsius, and make them the new
; min and max values. Set YStyle to 1 to make the axis exact.

Drawing Polar Plots

The PLOT procedure converts its coordinates from cartesian to polar coordinates
when plotting if the Polar keyword parameter is set. The first parameter to plot is
the radius, R, and the second is 0, expressed in radians. Polar plots are produced
using the standard axis and label styles— with box axes enclosing the plot area.

Figure4-16illustratesusing AXISto draw centered axes, dividing the plot window
into the four quadrants centered about the origin. This method uses PLOT to plot

66

PV-WAVE User’s Guide

the polar dataand to establish the coordinate scaling, but suppressesthe axes. Next,
two callsto AXIS add the x— and y—axes, drawn through data coordinate (0,0):

r = FINDGEN (100)

; Make a radius vector.
theta = r/5

; And a theta vector.

PLOT, r, theta, Subtitle = ’Polar Plot’, $
XStyle = 4, YStyle = 4, /Polar
; Plot the data, suppressing the axes by setting their styles to 4.
AXIS, XAxis = 0, 0, O
AXIS, YAxis = 0, 0, 0O
; Draw the x—and y—axes through (0,0).

Paolar Plot

Figure 4-16 A polar plot.

Clipping PV-WAVE Graphics

Clipping removes data from a specified region of the display device. Keywords
provided with the PV=WAVE graphics commands let you specify how clipping is
done.

The clipping concept can be described in terms of a* clipping rectangle.” Graphics
that fall inside the clipping rectangle are displayed; graphicsthat fall outside the
rectangle are not — they are clipped.

For example, the following commands produce the graphics shown in Figure 4-17:

PLOT, HANNING (100,100)
; Produces the graphic on the left (a). Data is not clipped.

PLOT, HANNING(100,100), Clip=[0,0, 5000,1]

Drawing X Versus Y Plots 67

; Produces the graphic on the right (b). Data is clipped outside the
; clipping rectangle, which is defined with the Clip keyword.

clipping
rectangle

mmmmuum A 4

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

a) not clipped (b) clipped

Figure 4-17 The graphic in (a) is displayed without clipping. The same data is plotted in (b),
but clipping is used so that only half of the data is shown. (The dashed line shows the clip-
ping rectangle.)

Defining a Clipping Rectangle

The following illustration shows a plot that is clipped. The dashed line shows the
boundary of the clipping rectangle. (This dashed line does not appear on the actual
PV=WAVE plot.) Note that all of the data that falls outside this rectangle are
clipped. The data that fall inside the rectangle are displayed normally.

The Clip keyword is used to define the clipping rectangle as follows:

PLOT, INDGEN(100), Clip=[25,25,75,75]
The Clip keyword specifies the lower-left and upper-right corners of arectangle:

Clip = [Xo, Yo, X3, Yi]
By default, the Clip keyword accepts data coordinates.

68

PV-WAVE User’s Guide

Clipping Demonstration
e e

P B e e m

Clipping Rectangle

—ls Title

o

0 20 40 &0 &0 100

Figure 4-18 Graphics outside the boundary of the clipping rectangle are not displayed —
they are clipped.

The following illustration shows the same plot with a different clipping region
defined:

PLOT, INDGEN(100), Clip=[50,50,100,100]

Ciipping Demonstration
— T

o[T T T T T

(100, 100)

[Clipping Rectangle

B0

s Til
a
S

o
A=
~
I
I
I
I
I
L

Hedis Title

Figure 4-19 Another clipping rectangle defined by the Clip keyword.

The next illustration shows the same plot once again, but thistime the clipping rect-
angle is defined in such away that none of the data are displayed.

PLOT, INDGEN(100), Clip=[20,60, 40,90]

Drawing X Versus Y Plots 69

— DM‘Q Der‘nons‘tm‘u"on —
L r — — 71 (40,90)]
wl I I]
L | | 4

I L]
=" (20, 60)]

e[T T T

Y—huis Titls

HeAuis Title

Figure 4-20 The clipping rectangle is defined so that none of the data are displayed. All of
the data fall outside the clipping rectangle.

How is Clipping Controlled in PV-WAVE?

The following graphics keywords and system variables control clipping. They are
listed hereintheir order of precedence. Thefirst keyword inthelist, NoClip, takes
precedence over al the other keywords and system variables below it, and so on.

1. NoClip (graphics keyword)
2. Clip (graphics keyword)

3. PClip (graphics keyword)
4. 'PNoClip (system variable)
5. 1PClip (system variable)

The following sections explain how these keywords and system variables are used
to control clipping of PV=WAVE graphics.

For more information on these keywords and system variables, see and .

Which PV-WAVE Commands Use Clipping
The graphics procedures that use clipping are:

* CONTOUR (see Chapter 5, Displaying 3D Data)
* SURFACE (see Chapter 5, Displaying 3D Data)
e PLOT

PV-WAVE User’s Guide

« OPLOT

 POLYFILL
« PLOTS
« XYOUTS

The way clipping works depends on the graphics command you are using. The
table in the next section breaks these commands into three groupings. Each
grouping handles clipping in the same way. That is, each group has the same
clipping defaults, accepts the same clipping keywords, and reads the same clipping
system variables.

Notes on the Keywords and System Variables

The Clip keyword takes data coordinates by default. To clip in normal or device
coordinates, add /Device or /Normal to the graphics command.

When you call PLOT, the value of !PClip is set to adefault value. Thisvalue
depends on the current device. Setting the Clip keyword has no effect on 'P.Clip.

Thedefault clipping rectangle for OPLOT isdefined by thevalue of |P.Clip. !PClip
is set by the call to PLOT, CONTOUR, or SURFACE.

Since clipping isdisabled for PLOTS, POLYFILL, and XYOUTS by default, the
NoClip keyword has little importance for these commands.

Changing the value of the 'PNoClip system variable has no effect on PLOTS,
POLYFILL, and XYOUTS.

Clipping controls are summarized in the following table:

Clipping Controls in PV=WAVE

Command Default Clipping Clipping Options
CONTOUR (*), IPClip isset by these Use the Clip keyword to specify a
PLOT, commands. It defines the clipping rectangle within default
SURFACE (*) default clipping rectangle, clipping region.
which is usually bounded by
the coordinate axes. Set the NoClip keyword to override
Clip and explicitly enforce the default
condition.

PClipisnot avalid keyword for these
commands. !P.Clip, and 'PNoClip are
not recognized.

Drawing X Versus Y Plots 71

Clipping Controls in PV=WAVE (Continued)

Command Default Clipping Clipping Options

OPLOT The clipping rectangle is Use the Clip keyword to specify a
defined by the coordinate axes clipping rectangle.
(the plot data region).

Disable clipping altogether by setting
/NoClip or !P.NoClip=1.If
you disable clipping, then data that
falls outside the region bounded by
the coordinate axes is not clipped.

PClip isnot avalid keyword for

OPLOT.
PLOTS, Clipping is disabled. Use the Clip keyword to specify a
XYOUTS, clipping rectangle.

POLYFILL
Set the PClip keyword to override the
default condition. PClip causes the
value of 'P.Clip to be used to define
the clipping rectangle (usually the
area bounded by the coordinate axes).

* Denotes a 3D Routine, see Chapter 5, Displaying 3D Data.

Examples

Thefollowing examplesillustrate how clipping worksfor specific combinations of
two-dimensional plotting routines, and the clipping keywords and system
variables.

OPLOT Default Clipping

In this example, PLOT plotsasolid line, then OPLOT plots adotted line. The dot-
ted lineisclipped at the boundary of the axes (the default clipping rectangl e defined
in the P.Clip system variable).

PLOT, INDGEN(100)

OPLOT, INDGEN(100)+10, Linestyle=2

Figure 4-21 shows the default clipping of the OPLOT line at the at the boundaries
of the axes set up for the PLOT line.

72 PV-WAVE User’s Guide

Clipping Demonstration
100[L B L B Y

B0 . .

Y—hAxiz Title
.

201 »

a¥. e e
0 20 4] &4 4] 100
w—Axis Title

Figure 4-21 By default, graphics plotted with OPLOT are clipped by the boundary of the
coordinate axes.

OPLOT with NoClip Keyword

In the next example, the NoClip keyword is added to the OPLOT command. This
overrides the default clipping rectangle defined by !P.Clip, and the dotted line
extends beyond the boundary of the coordinate axes.

PLOT, INDGEN(100)
OPLOT, INDGEN(100)+10, LineStyle=2, /NoClip

The effect of specifying the NoClip keyword in an OPLOT command is shownin
Figure 4-22.

Drawing X Versus Y Plots 73

Clipping Dermonstration «°

100 | ‘0
L ’
i *
*
2ar g .
r *
*

. " -
a
a N - i
= =l [R]
& L *
2 v
I 0 Re]
o 4 I ‘,

*
*
3 ’
200 o 1
e
.
G- P N B R .
o] 24 44 &0 24 100
X—axiz Title

Figure 4-22 When the NoClip keyword is specified, the overplotted data is not constrained
by default clipping rectangle (the region bounded by the coordinate axes).

OPLOT with Clip Keyword
Finally, the Clip keyword is used with OPLOT, and only the dotted line is clipped.

PLOT, INDGEN(100)

OPLOT, INDGEN(100) + 10, LineStyle = 2, $
Clip = [25, 25, 75, 75]

Figure 4-23 shows the graphic with only the OPLOT line clipped.

74

PV-WAVE User’s Guide

Clipping Demonstration
100_"'|"'|"'|"'|"'

BOr 7

SO * 7

Y—hAxiz Title
.

a l PR TSI RS R S
0 20 4] &4 4] 100
w—Axis Title

Figure 4-23 The Clip keyword is used to specify a clipping rectangle for OPLOT. Only the
OPLOT data is clipped.

XYOUTS Default Clipping

When PLOTS, POLYFILL, or XYOUTS s called, clipping is disabled by default
(that is, thevalue of the!P.Clip system variableisignored). I n thisexample, thetext
drawn by XYOUTS extends well beyond the coordinate axes into the device
region.

PLOT, INDGEN (100)

XYOUTS, 60, 40, 'This is a Clipping Demonstration’

Figure 4-24 shows the result of the code. Note that the text specified by the
XYOUTS procedure is not affected by any axis-boundary default clipping.

Drawing X Versus Y Plots 75

Clipping Cemanstration
e T e

100_""

—hals Title

Thiz i= g Clippiﬂg Demaonstration

u] PR SR SR [N TR T TR [N TN SN WA NN SO SR T N T S
0 20 40 60 B 100
K—Axiz Title

Figure 4-24 By default, clipping is disabled for PLOTS, POLYFILL, and XYOUTS. Here the
text extends well past the default clipping region bounded by the coordinate axes.

XYOUTSwith PClip Keyword

In the next example, the PClip keyword isused. Thiskeyword overridesthe default
clipping conditionfor XYOUTS, PLOTS, and POLY FILL. PClip causesthe value
of IPClip to be recognized for these commands, and graphics (or text) are clipped
at the boundary of the coordinate axes.

PLOT, INDGEN (100)

XYOUTS, 60,40, 'This is a Clipping Demonstration’, /PClip

By using the PClip keyword with XYOUTS, the text is contained within the coor-
dinate boundaries of the graphic as shown in Figure 4-25.

76

PV-WAVE User’s Guide

Clipping Dermonztration
g T

r—pals Title

Thiz iz a Gl

o PR T TN [T TN T T TN T TR N TR SO TR SN Y S
a 20 40 60 A 1048
=iz Title

Figure 4-25 With the PClip keyword set, XYOUTS uses the value of the system variable
IP.Clip as its clipping rectangle. In this case, !P.Clip was set by the PLOT command to the
boundary of the coordinate axes.

XYOUTSwith Clip Keyword

Finaly, the Clip keyword isused with aXYOUTS. Clip works the same way with
all graphicsfunctions— it defines a clipping rectangle within the plot dataregion.
In this example, the text drawn by XYOUTS s clipped everywhere outside the
clipping rectangle.
PLOT, INDGEN(100)
XYOouTs, 60,40, Clip=[40,20,80,80], S

'This is a Clipping Demonstration’
Figure4-26 demonstratesthe ability to clip the XY OUTS proceduretext within the
coordinate boundaries of the graphic using the Clip keyword.

Drawing X Versus Y Plots 77

Clipping Cemanstration
L B A B

1m_' T
r_ - - — —
EO __ | | T
| | JE— Clipping
Rectangle
w BO[| | —
E L
P I I
= ant (=3 ISl _
I I
z0 - - — = - —
n_. L I [R
0 20 440 60 B 100
=g Title

Figure 4-26 In this example, the Clip keyword is used with XYOUTS to specify a clipping
rectangle. Only the text is clipped; the data is unaffected.

Getting Input from the Cursor

The CURSOR procedure reads the position of the graphics cursor of the current
graphicsdevice. It enablesthe graphic cursor onthe device, optionally waitsfor the
user to position it and press a mouse button to terminate the operation (or type a
character if the device has no mouse), and then reports the cursor position.

Theform of acal to CURSOR, where x and y are output variables that hold the x
and y position of the cursor, and wait specifies when CURSOR returnsis:

CURSOR, x, y [, wait]

For detailed information on the CURSOR procedure, its parameters and optional
keywords, see the description in the PV-WAVE Reference.

Thefollowing code letsyou draw lines between points marked with theleft or mid-
dle mouse button. Press the right mouse button to exit the routine.
CURSOR, X, Y, /Normal, /Down
; Get the initial point in normalized coordinates.
WHILE (!ERR NE 4) DO BEGIN
; Repeat until the right button is pressed.

78

PV-WAVE User’s Guide

CURSOR, X1, Y1, /Normal, /Down
; Get the second point.
PLOTS, I[X, X11, [Y, Y1]l, /Normal
; Draw the line.
X =Xl &Y =Yl
; Make the current second point be the new first.
ENDWHILE

For another example, the following simple procedure can be used to label plots
using the cursor to position the text:
PRO ANNOTATE, TEXT
; Text is the string to be written on the screen.
PRINT, ’‘Use the mouse to mark the’ + '’ text starting point:’
; Ask the user to mark the position.
CURSOR, X, Y, /Normal, /Down
; Get the cursor position after any button press.
XYOUTS, X, Y, TEXT, /Normal, /NoClip

; Write the text at the specified position. Using
; the NoClip keyword ensures that the text will appear
; even if it is outside of the plotting region.

END

To place the annotation on a device with an interactive pointer, call this procedure
with the command:

ANNOTATE, ’'Text for label’

Then move the mouse to the desired spot and press the left button.

Getting Input from the Cursor 79

80

PV-WAVE User’s Guide

Displaying 3D Data

This chapter shows how to display graphic representations of three-dimensional
data. The two main proceduresfor doing thisare CONTOUR and SURFACE. Pro-
cedures for displaying data as an image, another type of three-dimensional data
representation, are discussed in Chapter 6, Displaying Images. The 3D plotting
procedures include:

CONTOUR, z[, x, Y]
; Draws contour plots.

CONTOURZ, z[, x, ¥]
; Draws contour plots.

SURFACE, z[, X, Y]
; Draws 3D surface plots.

SHADE_SURF, z[, X, y]
; Draws shaded 3D surface plots.

CONTOUR, CONTOUR?2, and SURFACE use line graphics to depict the value of
atwo-dimensional array. Astheir namesimply, CONTOUR and CONTOUR2
draw contour plots. SURFACE depicts the surface created by interpreting each
array element as an elevation. SURFACE projects this three-dimensional surface,
after an arbitrary rotation about the x—and z—axis, into two dimensions. It then con-
nects each point with its neighbors using hidden line removal.

Almost al of theinformation concerning coordinate systems, keyword parameters,
and system variables that are discussed in Chapter 4, Displaying 2D Data, also
apply to CONTOUR, CONTOUR?2, and SURFACE. The keywords and system
variables discussed in this chapter are described in detail in the PV-WAVE
Reference.

81

Differences Between CONTOUR and CONTOUR2

CONTOURZ2 enhances PV=WAVE's contouring capabilities by adding scattered
data plotting and sophisticated curve smoothing to produce more realistic contour
linesthan CONTOUR. These advantages are especially noticeable in smaller data
Sets.

When to Use CONTOUR2

* Use CONTOUR?2 to plot 3D scattered data. Note that CONTOUR?Z plots rect-
angular and irregularly gridded data using the same curve smoothing algorithm
that it uses for scattered data.

* CONTOURRZ produces more “realistic” contours, especially for sparse data
Sets.

« CONTOURZ's Fill keyword simplifies the procedure for creating filled
contours.

When to Use CONTOUR

» Because CONTOURZ's curve smoothing is computationally intensive, con-
sider using CONTOUR if a shorter computing time is important. Remember
that whenever you use CONTOUR, your data must define either arectangular
or curvilinear coordinate system.

When to Use either CONTOUR or CONTOUR?2

» For regular or irregularly gridded data, you can use either the CONTOUR or
CONTOUR2.

Drawing Contour Plots with the CONTOUR Procedure

NOTE The following sections describe how to use the CONTOUR procedure;
however, most of the information appliesto CONTOURZ2 aswell. The primary dif-
ferences between CONTOUR and CONTOUR?Z are listed in the previous section.
For detailed information on these procedures, see the PV-WAVE Reference.

The CONTOUR procedures draw contour plots from data stored in arectangular
array. In their simplest form, these procedures make a contour plot given atwo-
dimensional array of zvalues. In more complicated forms, CONTOUR accept, in

82 PV-WAVE User’s Guide

addition to zvalues, arrays containing the x and y locations of each column, row, or
point, plus many keyword parameters. |n more sophisticated applications, the out-
put of CONTOUR may be projected from three dimensions to two dimensions,
superimposed over an image, or combined with the output of SURFACE.

Basic Usage

The simplest call to CONTOUR is:
CONTOUR, z

This call labels the x— and y—axes with the subscript along each dimension. For
example, when contouring a 10-by-20 array, the x—axisrangesfrom 0to 9, and the
y—axisfrom O to 19.

You can explicitly specify the x and y locations of each cell with the call:
CONTOUR, z x, y

Thexandy arraysmay be either vectors or two-dimensional arraysof the samesize
asz. If they are vectors, the element Z;; has a coordinate location of (X;, ;). Other-
wisg, if thex andy arrays aretwo-dimensional, the element Z; ; hasthelocation (X,
Y;;) Thus, vectors should be used if the x location of Z; ; does not depend upon j and
the y location of Z;; does not depend uponi.

Dimensions must be compatible. In the one-dimensiona case, x must have a
dimension equal to the number of columnsin z, and y must have adimension equal
to the number of rowsin z In the two-dimensional case, all three arrays must have
the same dimensions.

PV=WAVE uses linear interpolation to determine the x and y locations of the
contour linesthat pass between grid el ements. The cellsmust beregular, in that the
x and y arrays must be monotonic over rows and columns, respectively. The lines
describing the quadrilateral enclosing each cell and whose vertices are (X;;, V),
Kisijo Yier)s K jais Yiwijoi)> and (X 11, Yijer) Must intersect only at the four corners.

Alternative Contouring Algorithms in CONTOUR

In order to provide awide range of options, CONTOUR uses either the cell draw-
ing or the follow method of drawing contours.

Cell Method

The cell drawing method is used by default. It examines each array cell and draws
all contours emanating from that cell before proceeding to the next cell. This
method is efficient in terms of computer resources but does not allow such options
as contour labeling or smoothing.

Drawing Contour Plots with the CONTOUR Procedure 83

Follow Method

The follow method searches for each contour line and then follows the line until it
reaches aboundary or closes. This method gives better ooking results with dashed
linestyles, and allows contour labeling and bicubic spline interpolation, but
requires more computer time. It can be used in with the CONTOURFILL proce-
dure to shade closed contour regions with specified colors, as explained in Filling
Contourswith Color on page 94. Thefollow method isused if any of thefollowing
keywords is specified: C_Annotation, C_Charsize, C_Labels, Follow,
Path_Filename, or Spline. In addition, the use of any of these keywords causesthe
contours to be labeled.

NOTE Because of their differing algorithms, these two methods will often draw
dightly different correct contour maps for the same data. Thisis adirect result of
the fact that there is often more than one valid way to draw contours, and should
not be a cause for concern.

Controlling Contour Features with Keywords

In addition to most of the keyword parameters accepted by PLOT, the following
keywords apply to CONTOUR.

C Annotation C Labels Follow NLevels
C Charsize C Linestyle Levels Path_Filename
C Calors C Thick Max_Value Spline

For a detailed description of these keywords, see.

Contouring Example

Digital elevation data of the Maroon Bells area, near Aspen, Colorado, are used to
illustrate the CONTOUR procedure. This data providesterrain elevation data over
a 7.5 minute square (approximately 11-by-13.7 kilometers at the latitude of
Maroon Béells), with 30 meter sampling measured in Universal Transverse Merca
tor (UTM) coordinates.

The data are read into a 350-by-460 array A. The rectangular array is not com-
pletely filled with data, because the 7.5 minute square is not perfectly oriented to
the UTM grid system. Missing data are represented as zeroes. Elevation measure-
ments range from 2658 to 4241 meters, or from 8720 to 13,914 feet.

84

PV-WAVE User’s Guide

Figure5-1istheresult of applying the CONTOUR procedureto the data, using the
default settings:

CONTOUR, A

A number of problems are apparent:

200

100

PV=WAV E selected six contour levels, by default, of (4241 —0) / 7 meter inter-
vals, or approximately 605 meters. The levels are 605, 1250, ..., 3635, meters,
even though the range of valid datais from 2658 to 4241 meters. Thisis
because the missing data values of O were considered when selecting the inter-
vals. It is more appropriate to select levels only within the range of valid data.

e
R
~r*
X

EaRbee kil

Figure 5-1 Simple contour plot of Maroon Bells.

For most display systems, and for contour intervals of approximately 200
meters, the data are oversampled in the XY direction. This oversampling has
two adverse effects. the contours appear jagged, and alarge number of short
vectors are produced. This can cause performance problemswhen you attempt
to plot the data on agraphics device, especialy if the graphic output isdirected
to aseria terminal or PostScript printer.

The axes are labeled by point number, but should bein UTM coordinates.

It is difficult to visualize the terrain and to discern maxima from minima
because each contour is drawn with the same type of line.

Each of the above problemsis readily solved using the following simple

techniques:

Drawing Contour Plots with the CONTOUR Procedure 85

Specify the contour levelsdirectly using the Levels keyword parameter. Select-
ing contour intervals of 250 meters, at elevation levels of [2750, 3000, 3250,
3500, 3750, 4000], resultsin six levels.

Change the missing data value to a value well above the maximum valid data
value. Then use the Max_Value keyword parameter to exclude missing points.
In this example, we set missing data values to one million with the statement:
A(WHERE (A EQ 0)) = 1.0Ee6

Use the REBIN function to decrease the sampling in x and y by afactor of 5:
B = REBIN(A, 350/5, 460/5)

This smooths the contours, because the call to REBIN averages 52 = 25 bins
when resampling. The number of vectors transmitted to the display are also
decreased by afactor of approximately 25. The variable B is now a 70-by-92
array.

Care was taken, in the second step, to ensure that the missing data are not con-
fused with valid data after REBIN is applied. As, in this example, REBIN
averages bins of 52 = 25 elements, the missing data val ue must be set to avalue
of at least 25 timesthe maximum valid datavalue. After application of REBIN
any cell with amissing original data point will have a value of at least 106/25
= 40000, well over the largest valid data value of approximately 4500.

Vectors x and y are constructed containing the UTM coordinates for each row
and column. From the USGS data tape, the UTM coordinate of the lower-left
corner of the array is (326850, 4318500) meters. Asthe data spacing is 30
meters in both directions, the x and y vectors, in kilometers, are easily formed
using the FINDGEN function, as shown in the following example.

Contour levels at each multiple of 500 meters (every other level), are drawn
with a solid line style, while levels in between are drawn with a dotted line
style. In addition, the 4000 meter contour is drawn with atriple thick line,
emphasi zing the top contour.

Theresult of theseimprovementsisFigure 5-2. It was produced with thefollowing
statements:

a (WHERE (a eqg 0)) = leé6

»
1

[
I

; Set missing data points to a large value.
REBIN (a, 350/5, 460/5)

; Rebin down to a 70-by-92 matrix.
326.850 + .030 * FINDGEN (70)

4318.500 + .030 * FINDGEN(92)

; Make the x and y vectors, giving the position of each
; column and row.

86

PV-WAVE User’s Guide

CONTOUR, b, x, y, Levels = 2750+FINDGEN(6) * $

250., XStyle = 1, YStyle =1, $

Max Value = 5000, $

C Linestyle = [1, 0, 1, 0, 1, 0],S

¢ Thick = [1, 1, 1, 1, 1, 3], S

Title = 'Maroon Bells Region’, $

Subtitle = 250 meter contours’, $

XTitle = 'UTM Coordinates (KM) '
; Make the plot, specifying the contour levels, missing data
; value, line styles, etc. Set the style keywords to 1, obtaining
; exact axes.

Maraon Bells Region
0 e S g

4321.0

4320.5

TR T T I AT T

43200,

4319.50

PSRRI - STl B N BT

431804

4318504

327.5 S280
UTM Coordinates {KM)
230 meter contours

Figure 5-2 Improved contour plot.

Overlaying Images and Contour Plots

Figure 5-3 illustrates the data displayed as a gray-scale image. Higher elevations
are white. This image demonstrates that contour plots do not always provide the
best qualitative visualization of many two-dimensional data sets.

Drawing Contour Plots with the CONTOUR Procedure 87

St

et
SR

ik
0
ik

hr
siEeriiaded

Ereh
sttt
A S T

)
GO
5 o.vo.vo % Cp

:
RS
0?_9...._9 }_?0_9_95..9_0

A ...

+¢¢+¢>¢+++o>m+w++> TR >>>>>¢+++¢>>>>

orif it has pix-

as does PostScript,

Is

Pixe

candisplay pixelsof any given size. With these

the following statements were used to produce

notably PostScript

PV-WAVE User’s Guide

i o b
”,. 2 qn%_q% ;
o o g
S &
oo.?,oos: e et ot
o.vo.vo G e +> S e

++¢+++++¢+¢+ ++>¢+++¢.v .vw.ow.o >¢+M¢M+++¢+++¢.v e iatete

HE M.v.v.o Fearieie it bt
Bt

Superimposing an image and its contour plot combinesthe best of both worlds; the
image allows easy visualization, and the contour lines provide a semi-quantitative

display.
devices, it iseasy to set the size and position of animage so that it exactly overlays

the plot window. For example

resized to fit within the plotting area (if it is not already of a size suitable for view-
Figure 5-4:

ing). Thisleads to three separate cases which are illustrated in the following

examples.

tion. A combined contour and image display, such asthat discussed in this section,
intended to illustrate the many ways in which images and graphics may be com-
bined using PV=WAVE.

can be created using the IMAGE_CONT procedure. The following materia is
els of afixed size. If the device does not have scalable pixels the image must be

NOTE Beginners may want to skip the programs presented in the rest of this sec-

The technique used to overlay plots and images depends on whether or not the

Figure 5-3 Maroon Bells data displayed as an image.
deviceisableto represent pixelsof variable size

Overlaying on Devices with Scalable

Certaindevices,

88

c = BYTSCL(a, MIN = 2658, MAX=4241)
; Scale the range of valid elevations into intensities.
TV, ¢, !X.Window(0), !Y.Window(0), $
XSize = !X.Window(1l) - !X.Window(0), $
YSize = !Y.Window(1l) - !Y.Window(0), /Norm
; Display the image with its lower-left corner at the origin of the
; plot window, and with its size scaled to fit the plot window.
CONTOUR, b, x, y, Levels = 2750+FINDGEN(6) $
*250., MAX VALUE = 5000, XStyle = 1, $
YStyle =1, /Noerase, $

Title = ’'Maroon Bells Region’, $
Subtitle = 250 meter contours’, $
XTitle = 'UTM Coordinates (KM) '

; Write the contours over the image, being sure to use the exact
; axis styles so that the contours fill the plot window. Inhibit
; erasing.

Be sure that the position of the plot window contained in the field Window in !X,
1Y, and !Z, is set, using CONTOUR or PLOT, before executing the above
Statements.

4321.0
4320.5

4320.0

4315.0

L 1 —)
327.0 327.5 323.0 328.5

UTM Coordinates (KM}
230 meter cantours

4318.5

Figure 5-4 Overlay of image and contour plot.

Also, note that in Figure 5-4 that the aspect ratio of the image was changed to fit
that of the plot window. If it isdesired to retain the original image aspect ratio, the
plot window must be resized to an identical aspect ratio using the Position keyword
parameter.

Drawing Contour Plots with the CONTOUR Procedure 89

Overlaying on Devices with Fixed Pixels

There are two methods for overlaying images on devices with fixed pixels.

Method 1

If the pixel size can’'t be changed, for example on a Sun workstation monitor, an
image of the same size asthe plotting window must be created using the POLY _2D
function. The REBIN function can also be used to resample the original image, if
the plot window dimensions are an integer multiple or factor of the original image
dimensions. REBIN is always faster than POLY _2D.

The following commands create an image of the same size as the window, display
it, and then overlay the contour plot. These commands perform the same basic
function asthe IMAGE_CONT procedure, which is described in the PV-WAVE
Reference.

px = !X.Window * !D.X Vsize
py = !Y.Window * !D.Y Vsize
; Get size of plot window in device pixels.
sx = px(1)-px(0)+1
sy = py (1) -py(0)+1
; Desired size of image in pixels.
SIZE (a)

; Get size of original image. sz(1) = number of columns,
; $2(2) = number of rows.

SZ

ERASE
; Erase the display.

TV, POLY 2D(BYTSCL(a), [[0,0], S

[sz(1)/sx,011, [[0,sz(2)/syl,[0,0]1], &

0, sx, sy), px(0), py(0)
; Create a sx-by-sy image stretched from the original.
; Display it with same lower-left corner coordinate as the
; window. Note that we BYTSCL before changing the size,
; as it is more efficient to apply POLY_2D to byte images.
; Also, it is likely that the original image is smaller than the
; stretched image.

CONTOUR, a, /Noerase, XStyle = 1,YStyle = 1
; Draw the contour without first erasing the screen.

Method 2

If theimage is already close to the proper display size, it is simpler and more effi-
cient to change the plot window sizeto that of theimage. The following commands

90

PV-WAVE User’s Guide

display the image at the window origin, and then set the plot window to the image
size, leaving its origin unchanged:
px = !X.Window * !D.X Vsize
; Get the size of the plot window in device pixels.
py = !Y.Window * !D.Y Vsize
SIZE (a)
; The size of the original image.

Sz

ERASE
; Clear the display.

TVSCL, a, px(0), py(0)
; Scale and display the image at the lower left corner of the plot
; window.

CONTOUR, a, /Noerase, XStyle = 1, YStyle = 1,$
Position = [px(0), py(0), px(0)+sz(1)-1,3
py (0)+sz(2)-1]1, /Device
; Make the contour, explicitly set the plot window, in device
; coordinates to the size of the image. Make the axes exact.
; Don’t erase.

Of course, by using other keyword parameterswith the CONTOUR procedure, you
can further customize the results.

Labeling Contours

In the following discussion, a variable named DATA is contoured. This variable
contains uniformly distributed random numbers obtained using the following
statement:

DATA = RANDOMU (SEED, 6, 6)

NOTE The default SEED valueis used to create the DATA variable. Because of
this, if you try to run these examples, your output will probably differ somewhat
from the illustrations shown.

To label contours using the defaults for label size and contoursto labdl, it is suffi-
cient to simply select the Follow keyword. In this case, CONTOUR |abels every
other contour using the default 1abel size (3/4 of the plot axislabel size). Each con-
tour is labeled with its value. Figure 5-5 was produced using the statement:

CONTOUR, /Follow, DATA

Drawing Contour Plots with the CONTOUR Procedure 91

un
2
b

x*

1
)

=
q‘n>

N

1 -4 3 + 3

=)
ST

Figure 5-5 Simple labeled contour plot.

TheC_Charsizekeyword is used to specify the size of the charactersused for |abel -
ing, in the same manner that Sze is used to control plot axis label size. The
C_Labels keyword can be used to select the contours to be labeled. For example,
supposethat wewant to contour thevariableDATA at 0.2, 0.5, and 0.8, and wewant
al threelevelslabeled. In addition, we wish to make each label larger, and use Post-
Script fonts. This can be accomplished with the statement:

CONTOUR, Level = [0.2, 0.5, 0.8], $

C Labels = [1, 1, 1], C Charsize = 1.25, $
DATA, Font = 0

; Note that Font = 0 is used to specify the use of hardware fonts.

For moreinformation on hardware fonts, see Software vs. Hardware Fonts. How to
Choose on page 259. The result of this statement is shown in Figure 5-6.

D"é

0‘5/
] 5

Figure 5-6 Label size and levels specified.

‘6\7

PV-WAVE User’s Guide

Finally, it is possible to specify the text to be used for the contour labels using the
C_Annotation keyword.

CONTOUR, Level = [0.2, 0.5, 0.8], C Labels = §$
[1, 1, 1], C_Annotation = [’'Low’, $
'Medium’, ‘High’], DATA, Font = 0

Theresult is shown in Figure 5-7.

L‘.”
k

HUARNEL YRRN LR LR RRLLD RIS ALY
-
\

=)
S FTTTTTITTT \HH‘

..1‘....‘. 4

Figure 5-7 Explicitly specified labels.

Smoothing Contours

NOTE The CONTOUR? agorithm produces smoothed contour lines by default.

When the Spline keyword is specified, CONTOUR smooths the contours using
cubic splines. Thisis especialy effective when used with sparse data sets — the
effectiveness of smoothing diminishesif enough data points are present and the
cost of the spline calculations increases. Use of spline interpolation is not recom-
mended when the array dimensions are more than approximately 15.

The effect of smoothing the variable DATA using the statement:

CONTOUR, Level = [0.2, 0.5, 0.8], s
C Labels = [1, 1, 1], /Spline, DATA

can be seen in Figure 5-8. Compare it with the non-smoothed versionsin
Figure 5-6 and Figure 5-7.

Drawing Contour Plots with the CONTOUR Procedure 93

\

AN/ (T

~—

AT m:";\%\\< E

| R R
1 2 + 3

ra 7
RN R CARRRRRINN R
N
O

|

=]
S T

J

Figure 5-8 Contour plot with smoothing via cubic splines.

Filling Contours with Color

NOTE The following procedure applies primarily to CONTOUR. The
CONTOURZ2 procedure simplifies contour filling with a convenient Fill keyword.
See the PV-WAVE Reference for information filling contours with CONTOUR2.

Itispossibletofill closed contourswith color by using the keyword Path_Filename
in conjunction with the procedure POLY CONTOUR. Path_Filename specifiesthe
name of afile to contain the contour positions. If Path_Filename is present,
CONTOUR does not draw the contours, but rather, opens the specified file and
writes the positions, in normalized coordinates, into it. The file thus produced is
used by POLY CONTOUR tofill the closed contours with different colors. POLY -
CONTOUR hasthe form:

POLY CONTOUR, filename [, Color_Index = cin]

where filename is the name of the file written by CONTOUR an cin is the color
index array. Element O of cin contains the background color, and each of the fol-
lowing elements contains the color that the corresponding contour level should be
filled with. If the Color_Index keywordisnot specified, POLY CONTOUR supplies
adefault set of colors.

The problem with directly producing a plot in this manner is that most of the con-
tours are not closed, as they run beyond the borders of the plot. Since

POLY CONTOUR can only fill closed contours, many of the contours will not be
filled. This can be avoided by creating an array with two more columns and two

94

PV-WAVE User’s Guide

more rows than our data array. The data array is placed into the center of this new
array, and the outer rows and columns are set to avalue that is not specified in the
Levels keyword. Thiswill ensure that there are no open contours. To demonstrate
with our DATA variable:

data2 = REPLICATE(-1.0, 8, 8)

; DATA2 has two more rows and two more columns than DATA, and

; is filled with —1.0, which is not a value that will be specified as a contour level.
data2(1,1) = data

; DATA is copied into the center of DATA2. The edges remain at —1.0.

Using DATA2, the following statements will produce a contour plot of DATA with
the contours filled:

clev = [0.2, 0.5, 0.8]
; Levels to contour.

cin= [192, 208, 224, 240]
; Colors to fill with.

clab=[1, 1, 1]
; Contours to Label (all three specified in clev).

CONTOUR, /Spline, Levels = clev, $

C Label = clab, Path Filename = $

‘cpaths.dat’, data2, XRange = [0, 7], $

XStyle = 1, YRange = [0, 7], YStyle =1
; Create a file named cpaths.dat containing the contour paths.
; The range keywords avoid plotting the top and right border.
; The style keywords prevent PV=WAVE from rounding the plot
; range to a different value from that specified.

POLYCONTOUR, ‘cpaths.dat’, Color Index = cin
; Use POLYCONTOUR to fill the closed contours.
CONTOUR, /Spline, Levels = clev, C _Label = $
clab, /Noerase, data2, XRange = [0, 7], $ XStyle = 1, YRange
= [0, 7], Y¥YStyle = 1

; Use CONTOUR a second time to draw the contours over the
; filled regions.

Theresult is shown in Figure 5-9.

Drawing Contour Plots with the CONTOUR Procedure 95

T T T T T T T T T T T T
e—_— N __
{?
o 2) ot
1 . .

e,
%
g &
<Qﬁ
5 05 \>
L 1 L L L 1 L
4 B

Figure 5-9 Filled contour plot with closed contours.

L

Q " " L
0 z

Drawing a Surface

The SURFACE procedure draws “wire mesh” representations of functions of X
and Y, just as CONTOUR draws their contours. Parametersto SURFACE are sSim-
ilar to CONTOUR. SURFACE accepts atwo-dimensional array of Z (elevation)
values, and optionally x and y parametersindicating the location of each Z element.

SURFACE projectsthethree-dimensional array of pointsinto two dimensions after
rotating about the Z and then the X axes. Each point is connected to its neighbors
by lines. Hidden lines are suppressed. The rotation about the X and Z axes can be
specified with keywords, or a compl ete three-dimensional transformation matrix
can be stored inthefield P.T, for use by SURFACE. Details concerning the
mechanics of 3D projection and rotation are covered in the next sections.

Thefollowing code illustrates the most basic call to SURFACE. It produces atwo-
dimensional Gaussian function and then calls SURFACE to produce Figure 5-10:

z = SHIFT(DIST(40), 20, 20)
; Create a 40-by-40 array, shift the origin to the center of the array.

SURFACE, EXP(-(z/10)"2)

; Form a Gaussian with a 1/e width of 10, and call SURFACE to
; display it.

96

PV-WAVE User’s Guide

0.2

full=]

LA
“.‘i““ AR

A T S
""“*""‘:&}"ﬁrﬁﬁ-‘ﬂ{-‘:ﬁ“‘
> v

o e St
e *
s

Figure 5-10 Simple SURFACE plot of a Gaussian.

In the above example, the DIST function creates an (n, n) array. DIST is a useful
function for creating data, and is described in detail in the PV-WAVE Reference.

Controlling Surface Features with Keywords

The following keywords are unigue to, or have particular relevance to, the
SURFACE procedure. For a complete list of the SURFACE keywords, seethe
description of SURFACE in the PV-WAVE Reference.

AX Horizontd Skirt
Az Lower_Only Upper_Only
Bottom Save ZAXis

For a detailed description of these keywords, see.

Drawing a Surface 97

Example of Drawing a Surface

Figure 5-11 illustrates the application of the SURFACE procedure to the Maroon
Bells data discussed earlier in this chapter (see Drawing Contour Plots with the
CONTOUR Procedure on page 82).

Figure 5-11 Maroon Bells surface plots.

The left illustration was produced by the following statements:

c = REBIN(a > 2650, 350/5, 460/5) $
SURFACE, ¢, X, y, SKIRT=2650

Thefirst statement rebins the original datainto a 70-by-92 array, as discussed in
Contouring Example on page 84, while setting al missing data values (which are
0) to 2650, the lowest elevation we wish to show. Aswith CONTOUR, there can
be too many data values, obscuring the surface with too much detail, and requiring
more computation and drawing time.

Theright illustration shows the Maroon Peaks area looking from the back row to
thefront row (north to the south), Az = 210, and from aslightly steeper azimuth
AX = 45. Also, only the horizontal lines are drawn because the Horizontal key-
word assignment is present in the call:

SURFACE, ¢, X, y, SKIRT=2650, /Hor, AZ = 210, AX = 45

Because the axeswererotated 210 degrees about the original Z axis, the annotation
isreversed and the X axisis behind and obscured by the surface. This undesirable
effect can be eliminated by reversing the dataarray ¢ about its Y axis. Alsothey
vector of element locations must be reversed, and the YRange keyword used to
reversethe Y axis ordering.
SURFACE, reverse(c ,2), x, reverse(y), $

Skirt = 2650, /Hor, AX = 45, YRange = [Max(y), Min(y)]

; Perform as previously, but reverse the data rather
; than the axes.

98

PV-WAVE User’s Guide

Drawing Three-dimensional Graphics

Pointsin XY Z space are expressed by vectors of homogeneous coordinates. These
vectors are translated, rotated, scaled, and projected onto the two-dimensional
drawing surface by multiplying them by transformation matrices. The geometrical
transformations used by PV=WAVE, and many other graphics packages, are taken
from Chapters 7 and 8 of Fundamental s of I nteractive Computer Graphicshby J. D.
Foley and A. Van Dam (Addison Wesley Publishing Co., 1982). Consult this book
for adetailed description of homogeneous coordinates and transformation matri-
ces, as this section presents only an overview.

Overview of Homogeneous Coordinates

A point in homogeneous coordinates is represented as a four-element column vec-
tor of three coordinates and a scale factor w # O:

P(wx, wy, wz, W) = P(x/w, y/w, z/w,1)=(X,V, 2 (13.2)

One advantage of this approach is that trand ation, which normally must be
expressed as an addition, may be represented as a matrix multiplication. Another
advantage is that homogeneous coordinate representations simplify perspective
transformations.

PV-WAVE Uses a Right-handed Coordinate System

The coordinate system isright-handed so that when |ooking from a positive axisto
the origin a positive rotation is counterclockwise. As usual, the x-axis runs across
the display, the y-axisis vertical, and the positive Z axis extends out from the dis-
play to the viewer. A 90 degree positive rotation about the Z axis transforms the X
axistotheY axis.

Overview of Transformation Matrices

For most applications, it is not necessary to create, manipulate, or to even under-
stand transformation matrices. The T3D procedure, explained below, implements
most of the common transformations.

Transformation matrices, which post-multiply a point vector to produce a new
point vector, must be (4,4). A series of transformation matrices may be concate-
nated into a single matrix by multiplication. If A;, A,, and A; are transformation
matrices to be applied in order, and the matrix A isthe product of the three
matrices:

Drawing Three-dimensional Graphics 99

(P-A)-A) A=P-((A-A) A)=P-A
A= (A A) - A

PV=WAVE stores the concatenated transformation matrix in the system variable
field 'PT.

Each of the operations of tranglation, scaling, rotation, and shearing may be repre-
sented by a transformation matrix.

Translating Data
The transformation matrix to trandate a point by (Dx, Dy, D2) is:

100D,
010D,
001D,
000 1

Scaling Data

Scaling by factors of Sx, Sy, and Sz, about the x-, y- and z-axes respectively isrep-
resented by the matrix:

S, 000
0S,00
008S,0
0001

Rotating Data

Rotation about the x-, y-, and z-axes is represented respectively by the three
matrices:

1 0 0 O
0 cosB, —sinB, 0
0 sinB, cosd, O
0 0 0 1

R, =

100 PV-WAVE User’s Guide

cosf, 0 —siney 0

R = 0O 1 0 O
y .

sneyOCoseyo

0O 0 0 1

cosf, —sin6, 0 0

R = |Sin®, cosb, 00
0 0 10

0 0 01

Clipping 3D Plots

Clipping consists of defining a specific region in a plot where existing datais plot-
ted, and outside of which no data are shown. The general concept of clipping and
the use of clipping for two-dimensional plotsisdiscussed in Chapter 4, Displaying
2D Data. Keywords provided with the PV=WAV E graphics commands let you
specify how clipping is done.

Notes on the Keywords and System Variables for 3D Clipping

When you call CONTOUR or SURFACE, the value of |PClip is set to adefault
value. This vaue depends on the current device. Setting the Clip keyword has no
effect on IPClip.

Graphics keywords for controlling clipping are discussed in detail in Chapter 4,
Displaying 2D Data of this manual, and are summarized in Notes on the Keywords
and System Variables on page 71.

If you use clipping in athree-dimensional plot and you rotate the plot in three
dimensions, you may notice some unusual clipping behavior. For instance, some
part of your plot may be clipped in 3D when it was not clipped in 2D, as shownin
the following example. Note the clipping “problem” encountered when these two
plots are compared:

PLOT, INDGEN (100)

; Produce the first plot — a simple line plot.
SURFR

; Set up 3D translation.

PLOT, INDGEN(100), /T3D
; Produce the second plot — a simple line plot translated to 3D.

Drawing Three-dimensional Graphics 101

Untranslated Plot
———

100[— T

8o
GO~

401

2D 40 60 &0

Area of clipped
data

(a) Simple line plot, untranslated (b) Translated line plot.

Figure 5-12 The picture on the left (a) shows a simple line plot. In (b), the same plot is
shown translated in 3D. The translated plot appears to be missing some data near the origin.

Thekey to clipping inthree dimensionsisto remember that the ! P.Clip system vari-
able defines adefault clipping rectangle that a) isalwaysin device coordinates and
b) cannot be translated to 3D coordinates.

The following figure shows clearly why the rotated graphic was clipped by the
default clipping rectangle.
PRINT, !P.Clip
90 72 613 476 0 6
; Show the coordinates of the default clipping rectangle defined by !P.Clip.

In thisfigure, adashed line was drawn connecting the coordinates defining the cor-
ners of the default clipping rectangle. The coordinates of these corners were taken
directly from !P.Clip. The dashed lines show clearly the boundary of this clipping
rectangle. Part of the data (near the origin) falls outside this rectangle, and that is

why it is clipped.

102

PV-WAVE User’s Guide

(613, 476)

Figure 5-13 The data in a translated graphic can be clipped by the default clipping rectan-
gle, which cannot be rotated. This unwanted clipping behavior can be avoided by adding the
/NoClip keyword to the command that produces the rotated graphic.

You can avoid unwanted clipping of translated plots by adding the NoClip keyword
to the graphics command:

PLOT, INDGEN(100), /T3D, /NoClip

Figure 5-14 The same translated plot is produced, but this time /NoC ip is specified on the
command line. The data near the origin is not clipped.

Theclipping rectangle defined by the Clip keyword istranslatec along with the plot
for which it is defined. You can use Clip to modify aplot, and :he clipping is pre-
served whenever you translate or rotate the plot in 3D, as the following example
shows:

Drawing Three-dimensional Graphics 103

PLOT, INDGEN(100), Clip=[25,25,75,75]
SURFR

PLOT, INDGEN(100), Clip=[25,25,75,75], /T3D

Untransloted Plot
— T

a1
8o 1
g0
[1| “Clipping rectangle”

a0

2o 7

(a) Untranslated, clipped plot (b) Translated, clipped plot

Figure 5-15 The “clipping rectangle” defined by the Clip keyword is translated/rotated in 3D
along with the rest of the graphic. The clipping rectangle does not appear on an actual plot;
it is shown here for illustration purposes only.

Using the T3D Procedure to Transform Data

TheT3D procedure creates and accumul ates transformati on matrices, storing them
in the system variablefield IPT. It can be used to create a transformation matrix
composed of any combination of trandation, scaling, rotation, perspective projec-
tion, oblique projection, and axis exchange.

Keywords that affect transformations are applied in the order of their description
below:

QO Reset — Resetsthe transformation matrix to the identity matrix to begin anew
accumulation of transformations. If this keyword is not present, the current
transformation matrix !PT is post-multiplied by the new transformation. The
final transformation matrix is always stored back in IPT.

Q Trandate — Trandates by the three-element vector [T,, T, T,].

104 PV-WAVE User’s Guide

U

Scale— Scales by factor [S,, S, S
Rotate — Rotates about each axis by the amount [6,, 6,, 6,], in degrees.

U U

Perspective— A scalar (p) indicating the z distance of the center of the projec-
tion in the negative direction. Objects are projected into the XY plane, at
Z =0, and the“ey€e’ isat point (0, 0,).

Q Obligue— A two-element vector, [d, o, specifying the parameters for an
oblique projection. Points are projected onto the XY plane at z= 0 asfollows:
X =X+ z(dcosa)
y=y+ zdsnao)

An oblique projection isaparallel projection in which the normal to the pro-
jection planeisthe z-axis, and the unit vector (0, 0, 1) is projected to (d cos o,
dsinao).

@ XYexch — If set, exchanges the x- and y-axes.
A XZexch — If set, exchanges the x- and z-axes.
Q YZexch — If set, exchanges the y- and z-axes.

An Example of Transformations Created by SURFACE

The SURFACE procedure creates atransformation matrix from its keyword param-
eters AX and AZ asfollows:

Q It trandates the data so that the center of the normalized cube is moved to the
origin.
Q It rotates —90 degrees about the x-axis to make the +z-axis of the data the +y-

axisof thedisplay. The +y dataaxis extends from the front of the display to the
rear.

Q It rotates about the y-axis AZ degrees. This rotates the result counterclockwise
as seen from above the page.

QO It rotates about the x-axis AX degrees, tilting the data towards the viewer.

Q It then trandates back to the origin and scales the data so that the data are till
contained within the normal coordinate unit cube after transformation.

These transformations can be created using T3D as shown below. The SURFR
(SURFace Rotate) procedure mimics the transformation matrix created by SUR-
FACE using this method.

T3D, /Reset, Translate=[-.5, -.5, -.5]
; Translate to move center of cube to origin.

Drawing Three-dimensional Graphics 105

T3D, Rotate=[-90, az, 0]
; Rotate —90 degrees about x-axis, so +z-axis is now +}.
; Then rotate about y-axis AZ degrees.

T3D, Rotate=[ax, 0, 0]
; Rotate AX about x-axis.

SCALE3D

; This procedure scales !P.T so that the unit cube still fits within the
; unit cube after transformation.

Converting from 3D to 2D Coordinates

To convert from athree-dimensional coordinate to atwo-dimensional coordinate,
PV=WAVE follows these steps:

« Datacoordinates are converted to three-dimensional normalized coordinates.
As described in Coordinate System Conversion on page 44, to convert the X
coordinate from data to normalized coordinates:

I\Ix: XO + Xle

where X; is!X.S(i). The same process is used to convert the Y and Z coordinates
using!'Y.Sand !Z.S.

 Thethree-dimensional normalized coordinate, P = (N,, N,, N,), whose homo-
geneous representation is (N,, Ny, N,, 1), is multiplied by the concatenated
transformation matrix !'PT:

P=P-IPT

e Thevector P' isscaled, asin Equation 13.1 in Overview of Homogeneous
Coordinates on page 99, by dividing by w, and the normalized 2D coordinates
are extracted:

Ny=P,/Py,andN,=P /P,

« Thenormalized XY coordinateis converted to device coordinates as described
in Coordinate System Conversion on page 44.

This process can be written as a PV=WAVE function:

FUNCTION CVT_TO 2D, X, Yy, 2

; Accept a 3D data coordinate, return a two-element vector
; containing the coordinate transformed to 2D normalized
; coordinates using the current transformation matrix.

p = [!x.s(0) + !x.s(1) * x, ly.s(0) + ly.s(1)$
* vy, lz.s(0) + lz.s(1) * z, 1]
; Make a homogeneous vector of normalized 3D coordinates.

106

PV-WAVE User’s Guide

p=p# !P.T
; Transform by |P.T.
RETURN, [p(0) / p(3), p(1) / p(3)]
; Return the scaled result as a two-element, 2D, XY vector.

END

Establishing Your Own 3D Coordinate System

Usually, scaling parametersfor coordinate conversion are set up by the higher-level
plotting procedures. To set up your own 3D coordinate system with a given trans-
formation matrix and X, Y, Z datarange, follow these steps:

» Establish the scaling from your data coordinates to normalized coordinates —
the (0,1) cube. Assuming your data are contained in the range (Xqin, Ymin: Zmin)
t0 (Xinax: Ymaxr Zmax)» SEt the data scaling system variables as follows:

1X.8 = [-Zmin, 11 / (Xmax - Xmin)
1Y.S = [~Ymins 21 / Ymax - Ymin)
1Z2.8 = [Zmins 11 / (Zmax - Zmin)

o Establish the transformation matrix which determines the view of the unit
cube. This can be done by either calling T3D, explained above, or by directly
manipulating !PT yourself. If you wish to simply mimic the rotations provided
by the SURFACE procedure, call the SURFR procedure.

e Call the SCALE3D procedure to re-scale the projected unit cube back to the
(0,1) 2D normalized coordinate square. SCALE3D transforms a unit cube by
the current 'P.T and uses the extrema of each axis to translate and rescale the
result back to the unit square.

Example of Data Transformations

This example draws four views of asimple house. The procedure HOUSE defines
the coordinates of the front and back faces of the house. The data to normal coor-
dinate scaling is set, as shown above, to a volume about 25% larger than that
enclosing the house. The PLOT S procedure draws lines describing and connecting
the front and back faces. XYOUTS s called to label the front and back faces.

The main program contains four sequences of callsto T3D to establish the coordi-
nate transformation, followed by acall to SCALE3D to center the transformed unit
cubein the viewing area, and then by acall to HOUSE.

Drawing Three-dimensional Graphics 107

NOTE Remember that avalid data coordinate system must be established before
calling PLOTS. This coordinate system can be established by acall to PLOT, or by
explicitly setting values of the system variables !X, 'Y, and ! Z.

Procedure Used to Draw a House

PRO HOUSE
; Define a procedure to draw a house.

house x = [0, 16, 16, 8, 0, 0, 16, 16, 8, 0]
; The X coordinates of 10 vertices. First 5 are front face, second 5
; are back face. Range is 0 to 16.

house y = [0, 0, 10, 16, 10, 0, 0, 10, 16, 10]
; Corresponding y values. Range is 0 to 16.

house z = [54, 54, 54, 54, 54, 30, 30, 30, 30, 30]
; Zvalues, from 30 to 54.

1X.Ss = [-(-4), 1.)]1 / (20 - (-4))
; Set x data scale to range from —4 to 20.
'Y.S = !x.s

; Same for y.

12.8 = [-10, 1. 1 / (70 - 10)
; Zrange is from 10 to 70.

face = [INDGEN(5), 0]
; Indices of front face.
PLOTS, house_x(face), house_y(face), $
house z(face), /T3D, /Data
; Draw front face.
PLOTS, house x(face+5), house y(face+5),$ house z(face+5), /T3D,
/Data
; Draw back face.
FOR i=0, 4 DO PLOTS, [house x(i), $
house x(i+5)], [house y (i), $
$

house_y(i+5)], [house_z (i),
house_z (i+5)]1, /T3D, /Data
; Connecting lines from front to back.
XYOUTS, house x(3), house y(3), $
Z=house_z(3), ’'Front’, /T3D, $
/Data, Size=2
; Annotate front peak.

108

PV-WAVE User’s Guide

XYOUTS, house x(8), house y(8), $
Z=house_z(8), ’'Back’, /T3d, $
/Data, Size = 2

; Annotate back.
END
; End of HOUSE procedure.

Commandsthat Perform Transfor mations on the House

T3D, /Reset & SCALE3D & house
; Set up no rotation, scale, and draw house.

T3D, /Reset, rot=[30, 30, 0] & SCALE3D & HOUSE
; Straight projection after rotating 30 degrees about x- and y-axes.
T3D, /Reset, rot=[0, 0, 0], $
oblique = [.5, -45] & SCALE3D & HOUSE
; No rotation, oblique projection, Z factor = 0.5, angle = 45.
T3D, /Reset, rot = [0, 0, 0], perspective = 4 $
& SCALE3D & HOUSE
; No rotation, perspective at 4.

i
ﬁﬂ[’(
il
ack ront
Oﬁj E
nt

Figure 5-16 lllustration of different 3D transformations. From upper left: No rotation, plain
projection; Rotation of 30 degrees about both the x- and y-axes, plain projection; Oblique
projection, factor = 0.5, angle = —45; and in the bottom right, 30 degrees rotation with the
eye at 50.

Drawing Three-dimensional Graphics 109

3D Transformations with 2D Procedures

The CONTOUR and PLOT procedures output their results using the three-dimen-
sional coordinate transformation contained in !PT, if the keyword T3d is specified

NOTE !P. T must contain avalid transformation matrix prior to using the T3d
keyword.

The PLOT procedures output graphsin the XY plane at the normal coordinate z
value given by the keyword ZValue. If ZValue is not specified, the plot is drawn at
the bottom of the unit cube, at z=0.

CONTOUR draws axes at Z=0, and contours at their Z datavalue if ZValue is not
specified. If ZValueis present, CONTOUR draws both the axes and contoursin the
XY plane at the given Z value.

Combining CONTOUR and SURFACE Procedures

You can combine the output of SURFACE with the other graphics procedures. The
keyword Save causes SURFACE to save the graphic transformation it used in 'PT.
Then, when CONTOUR or PLOT are called with the keyword T3d, their output is
transformed with the same projection.

For example, Figure 5-17 illustrates SURFACE combined with CONTOUR. In
essence, this a combination of Figure 5-2 and Figure 5-11. Using the same vari-
ables as discussed in Drawing Contour Plots with the CONTOUR Procedure on
page 82 and Drawing a Surface on page 96, this figure was produced with the fol -
lowing statements:

SURFACE, ¢, x, vy, SKIRT=2650, /Save
; Make the mesh as in Figure 5-11.

CONTOUR, b, x, y, /T3d, /Noerase, $
Title = ’‘Contour Plot’, Max val=5000.,$
Zvalue = 1.0, /Noclip, Levels = 2750. + $
FINDGEN (6) *250
; Make the Contour plot as in Figure 5-2. Specify T3D to align
; with Surface, at ZVALUE of 1.0. Suppress clipping as the plot
; is outside the normal plot window.

110 PV-WAVE User’s Guide

Figure 5-17 Combining CONTOUR with SURFACE, Maroon Bells data.

Even More Complicated Transformations are Possible

Figure 5-18 illustrates the application of three-dimensional transforms to the out-
put of CONTOUR and PLOT. It shows athree-dimensional contour plot with the
contours stacked above the axes in the Z direction, the sum of the columns, also a
Gaussian, in the XZ plane, and the sum of the rowsin the YZ plane.

EPHLI
g

Figure 5-18 Example of using PLOT and CONTOUR with a 3D transform.

3D Transformations with 2D Procedures 111

The code used to draw Figure 5-18 is:

nx=40
temp = SHIFT(DIST(40), 20, 20)
z = EXP(- (temp/10)"2)
; Create a 2D Gaussian array, z.SURFR
; Set up !P.T with default SURFACE transformation.

pos = [.1, .1, 1, 1, 0, 1]
; Define the 3D plot window. X=.1t01,Y=.1to1,1andZ=0to 1.

CONTOUR, z, /T3D, NLEVELS=10, /Noclip, Position = pos, Charsize = 2
; Make the stacked contours. Use 10 contour levels.

T3D, /Yzexch
; Swap y- and z-axes. The original XYZ system is now XZY.
PLOT, z # REPLICATE(1., nx), /Noerase, $
/Noclip, /T3d, Title = 'Column Sums’, Position=pos, Charsize=2
; Plot the column sums in front of the contour plot.

T3D, /Xzexch
; Swap x- and z-axes,original XYZ is now YZX.
PLOT, REPLICATE(1., nx) # z, /Noerase, $
/T3d, /Noclip, Title = 'Row Sums’, Position = pos, Charsize = 2
; Plot the row sums along the right side of the contour plot.

The basic steps are:

Q First, the SURFR procedure is called to establish the default three-to two-
dimensional transformation used by SURFACE, as explained above. The
default rotations are 30 degrees about both the x- and z-axes.

O Next, avector, pos, defining the cube containing the plot window is defined
with normalized coordinates. The cube extendsfrom 0.1to 1.0 inthex and y
directions, and from 0 to 1 in the Z direction. Each call to CONTOUR and
PLOT must explicitly specify thiswindow to align the plots. Thisis hecessary
because the default margins around the plot window are different in each
direction.

Q CONTOUR iscalled to draw the stacked contours with the axes at Z=0. Clip-
ping isdisabled to alow drawing outside the default plot window whichisonly
two-dimensional.

QO TheT3D procedureis called to exchange the y- and z-axes. The origina XYZ
coordinate system isnow XZY.

Q PLOT iscaled to draw the column sums which appear in front of the contour
plot. The expression:

112

PV-WAVE User’s Guide

z # REPLICATE (1., nx)

createsarow vector containing the sum of each column in the two-dimensional
array z. The Noerase and Noclip keywords are specified to prevent erasure and
clipping. This plot appears in the XZ plane because of the previous axis
exchange.

Q T3D iscalled again to exchange the x- and z-axes. This makes the original
XY Z coordinate system, which was converted to XZY, now correspond to
YZX.

O PLOT iscalled to produce the row sumsin the Y Z plane in the same manner
asthefirst plot. Theorigina x-axisisdrawnintheY plane, and they-axisisin
the Z plane. One unavoidabl e side effect of this method is that the annotation
of thisplot isbackwards. If the plot istransformed so the letters read correctly,
the x-axis of the plot would be reversed in relation to the y-axis of the contour
plot.

Combining Images with 3D Graphics

Images are combined with 3D graphics, as shown in Figure 5-19, using the trans-
formation techniques described in the previous section.

Figure 5-19 Using the SHOW3 procedure to overlay an image, surface mesh, and contour.

3D Transformations with 2D Procedures 113

The rectangular image must be transformed so that it fits underneath the mesh
drawn by SURFACE. The general approach is as follows:

Q

Q
Q

Use SURFACE to establish the general scaling and geometrical transforma-
tion. Draw no data, asthe graphics made by SURFACE will be over-written by
the transformed image.

For each of the four corners of theimage, trand ate the data coordinate, which
issimply the subscript of the corner, into adevice coordinate. The data coordi-
nates of the four corners of an (m, n) image are (0,0), (m-1, 0), (O,n—1), and
(m—1, n—1). Call this data coordinate system (X, Y). Using a procedure or
function similar to CVT_TO_2D, described in Converting from 3D to 2D
Coordinates on page 106, convert to device coordinates, which in this discus-
sionarecalled (U, V).

The image is transformed from the original XY coordinates to anew imagein
UV coordinates using the POLY _2D function. POLY _2D accepts an input
image and the coefficients of apolynomial in UV giving the XY coordinatesin
the original image. The equations for X and Y are:

X=§o+ $:U+ §V+ § UV
Y=Too+ TosU+ T oV+ T UV

We solve for the four unknown S coefficients using the four equationsrelating
the X corner coordinatesto their U coordinates. The T coefficientsare similarly
found using the Y and V coordinates. This can be done using matrix operators
and inversion or, more simply, with the POLY WARP procedure.

The new imageisarectanglewhich enclosesthe quadrilateral described by the
UV coordinates. Itssizeis:

(max(U) —min(U) + 1, max(V) —min(V) + 1)
POLY _2D iscalled to form the new image which is displayed at device coor-
dinate (min(U), min(V)).
SURFACE is called once again to display the mesh surface over the image.

Finally, CONTOUR iscalled, with ZValue set to 1.0, placing the contour above
both the image and the surface.

The SHOW3 procedure performs these operations. Look at the code for the
SHOW?3 procedurein the Standard Library for details of how images and graphics
can be combined.

114

PV-WAVE User’s Guide

Drawing Shaded Surfaces

The SHADE_SURF procedure creates a shaded representation of a surface made
from regularly gridded elevation data. The shading information may be supplied as
aparameter or computed using alight source model. Displays are easily con-
structed depicting the surface elevation of avariable shaded as afunction of itself
or another variable. This procedure is similar to the SURFACE routine, but it ren-
ders the visible surface as a shaded image rather than a mesh.

Parameters are identical to those of the SURFACE procedure, described in the sec-
tion Drawing a Surface on page 96, with the addition of two optional keyword
parameters:

Shades — Specifies an array of the same dimensions as the Z parameter, which
contains the shading color indices. This array should be scaled into the range of
color indices, normally 0 to 255.

Image — Specifies the name of avariable into which the image created by
SHADE_SURF isplaced. Normally, theimageis displayed on the currently
selected graphics device and then discarded.

Alternative Shading Methods

The shading applied to each polygon, defined by its four surrounding elevations,
may be either constant over the entire cell, or interpolated. Constant shading is
faster because only one shading value needs to be computed for the entire polygon.
Interpolated shading gives smoother, usually more pleasing, results. The Gouraud
method of interpolation is used: the shade values are computed at each elevation
point, coinciding with each polygon vertex; then the shading isinterpolated along
each edge; and finally between edges along each vertical scan line.

Light source shading is computed using a combination of depth cueing, ambient
light, and diffuse reflection, adapted from Chapter 16 of Fundamentals of Com-
puter Graphics, Foley and Van Dam:

I'=la+dl,(L-N)
where:

I, isthe term due to ambient light. All visible objects have at |east thisintensity,
which is approximately 20% of the maximum intensity.

I,(L - N) isthe term due to diffuse reflection. The reflected light is proportional to
the cosine of the angle between the surface normal vector N, and the vector point-
ing to the light source L. |, is approximately 0.9.

Drawing Shaded Surfaces 115

d istheterm for depth cueing, causing surfaces further away from the observer to
appear dimmer. d = (z+2)/3, where z is the normalized depth, ranging from zero
for the most distant point, to one for the closest.

Setting the Shading Parameters

Parameters affecting the method of shading interpolation, light source direction,
and rejection of hidden faces are set with the SET_SHADING procedure,
described in the PV-WAVE Reference. Defaults are: Gouraud interpolation, light
source direction is [0, O, 1], and rejection of hidden faces enabled.

See the description of SET_SHADING in PV-WAVE Reference for a more com-
plete description of the parameters. Note that the Reject keyword has no effect on
the output of SHADE_SURF — it is used only with solids.

Sample Shaded Surfaces

Theleft sideof Figure 5-20illustratesthe application of SHADE_SURF, withlight
source shading, to the two-dimensional Gaussian, z, used to produce Figure 5-10
on page 97. This figure was produced by the statement:

SHADE SURF, z

A
AT
A

4

Figure 5-20 Shaded representations of two-dimensional Gaussian.

Theright half of Figure 5-20 showsthe use of an array of shades, whichinthiscase
issimply the surface elevation scaled into the range of bytes. The output of SUR-
FACE is superimposed over the shaded image with the statements:

SHADE SURF, z, SHADE=BYTSCL(z)

; Show Gaussian with shades created by scaling elevation into the
; range of bytes.

116

PV-WAVE User’s Guide

SURFACE, z, XST=4, YST=4, ZST=4, /Noerase
; Draw the mesh surface over the shaded figure. Suppress the axes.

Figure 5-21 shows the Maroon Bells data, also shown in the right half of
Figure 5-11 on page 98, as alight source shaded surface. It was produced by the
statement:
SHADE SURF, b, x, y, AZ=210, AX=45, XST=4,$

YST=4, ZST=4
The AX and AZ keywords specify the orientation. The axes are suppressed by the
axisstyle keyword parameters, asin this orientation the axes are behind the surface.

Figure 5-21 Maroon Bells data shown as a shaded surface.

Drawing Shaded Surfaces 117

118 PV-WAVE User’s Guide

Displaying Images

PV=WAVE is apowerful environment for image processing and display. The rou-
tines described in this chapter are the interface between PV=WAV E and the image
display system. Thefirst part of this chapter describes how images are displayed
and controlled. The second part describes afew of the simple waysimages can be
transformed or processed.

What is an Image?

Animageisatwo-dimensional array of pixels. The value of each pixel represents
the intensity and/or color of that position in the array. Images of this form are
known as sampled or raster images, because they consist of a discrete grid of sam-
ples. Such images come from many sources and are acommon way of representing
scientific and medical data.

Working with Images
The following routines are used to display and control images.
TV Procedure

; Displays images on the image display.

TVSCL Procedure

; Scales the intensity values of the image into the range of the display
; device, and then displays the result.

TVRD Function

; Reads image pixels back from the display device.

119

TVCRS Procedure

; Manipulates the image device cursor. TVCRS allows the cursor to
; be enabled and disabled, and allows it to be positioned.

TVLCT Procedure
; Loads a user-defined color table into the display device.

LOADCT Procedure
; Loads a predefined color table into the display device.

These routines are described further in this chapter, and aso in the PV-WAVE Ref-
erence. Many other routines that are useful in viewing and processing images are
also introduced in this chapter, such as REBIN, CONGRID, SMOOTH,
HIST_EQUAL, MEDIAN, CONVOL and many others.

In addition, most plotting and graphics routines can be used with images. These
routines are described in Chapter 4, Displaying 2D Data and Chapter 5, Displaying
3D Data. For example, you can overlay an image on a contour plot by combining
the output of the CONTOUR and TV procedures. Or, the CURSOR routine, which
isordinarily used to read the position of theinteractive pointer device, can be used
to determine the location of image pixels.

Image Display Routines: TV and TVSCL

The TV and TV SCL procedures display images on the screen. They take the same
arguments and keywords, and differ only in that TV SCL scales the image into the
intensity range of the display device, while TV displays the image directly.

For details on the keywordsfor a particular routine, seethe routine’sdescriptionin
the PV-WAVE Reference.

Windows USERS Because Windows NT reserves 20 out of the available 256
colors, you might achieve better results displaying color images with the TV SCL
procedure. TV SCL automatically scales the color intensities to the full range of
available colors.

Image Orientation on the Display Screen

The coordinate system of the image display screen is oriented with the origin, (0,
0), in the lower-1eft corner. The upper-right-hand corner has the coordinate
(Kaize — 1, Y4ire — 1), Where X, and Y, are the dimensions of the visible area of the

120

PV-WAVE User’s Guide

window or display. The descriptions of the image display routines that follow
assume awindow size of 512-by-512, although other sizes may be used.

I0rder is asystem variable that controls the order in which the image iswritten to
the screen. Images are normally output with thefirst row at the bottom (i.e., in bot-
tom to top order), unless ! Order is one, in which case, images are written on the
screen from top to bottom. The Order keyword can aso be specified with the TV
and TVSCL routines. It worksin the same manner as ! Order except that its effect
only lasts for the duration of the single call — the default isthat specified by
10rder.

An image may be displayed with any of the eight possible combinations of axis
reversal and transposition by combining the display procedures with the ROTATE
function.

Image Position on the Display Screen

Image positions run from the left of the screen to the right and from the top of the
screen to the bottom. If a position number is used instead of X and Y, the position
of theimage is calculated from the dimensions of the image as follows:

Kizer Ysize = Size of display or window

Xaim» Yaim = dimensions of array

Ny = Xize / Xgim = NUmMber of images across the screen
X = XgimP0SitioNyoquiony = Starting X value

Y = Yz — Yaim[1 + Position/ N,] = starting Y value

For example, when displaying 128-by-128 images on a512-by-512 window or dis-
play, the position numbers run from O to 15 as follows:

0123
4 56 7
8§ 91011
12 13 14 15

Image Size

Most image devices have afixed number of display pixels. Common sizes are 512
x 512, and 1280 x 1024. Such pixels have afixed size which cannot be changed.

For such devices, the areawritten on the screen is the same size as the dimensions
of theimage array. One-dimensional vectors are considered asrow vectors. The X

Image Display Routines: TV and TVSCL 121

and Y parameters specify the coordinates of the lower-left corner of the area writ-
ten on the display.

There are some devices, however, that can place an image with any number of pix-
elsinto an area of arbitrary size. PostScript devices are a notable example. These
devices are said to have scalable pixels, because there is no direct connection
between the number of pixelsin theimage and the physical spaceit occupiesinthe
displayed image. When the current image device has scalable pixds, PV=WAVE
setsthe first bit of !D.Flags. The following statement can be used to determine if
the current device has scalable pixels:

SP = !D.Flags AND 1

SP will be nonzero if the device has scal able pixels. When displaying an image on
adevice with scalable pixels, the default isto use the entire display surface for the
image. The XS ze and YS ze keywords can be used to override this default and spec-
ify the width and height that should be used.

The XSze and YS ze keywords should a so be used when positioning images with
the position argument to TV or TV SCL. Position normally uses the size of the
imagein pixelsto determinethe placement of theimage, but thisisnot possiblefor
deviceswith scalable pixels. Instead, the default for such devicesisto assumeasin-
gle position that fills the entire available display surface. However, if Xsize and
Ysize are specified, Position will use them to determine image placement.

Examples

TV, REPLICATE (100B, 512, 512)
; Set all display memory to 100.

ABC = BYTARR(50,100)
; Define a 50-column by 100-row array.

TV, ABC, 300, 400
; Display array ABC starting at location x=300, y=400. Display pixels
; in columns 300 to 349, and rows 400 to 499 are zeroed.
TV, ABC/2, 12
; Display image divided by 2 at position number 12.
TV, ABC, 256, 256, 2
; Output image to memory channel 2, lower-left corner at (256, 256).
AA = ASSOC(1, BYTARR(64,64))
; Assume file one contains a sequence of 64-by-64 byte arrays
FOR I=0, 63 DO TV, AA(I), I

; Display 64 images from file, from left to right and top to bottom,
; filling a 640-by-512 area.

122

PV-WAVE User’s Guide

Image Magnification and Reduction

The size of the area written on the screen, measured in pixels, isidentical to the
dimensions of theimage expression. Some output devices have hardware zoom and
pan, which can blow up small images to full screen.

NOTE For PostScript output, the size of a pixel may be varied, eliminating the
need for zoom, pan, or software re-sampling.

Other displays, including most of those with window systems, have no hardware
zoom. On these displays, images must be magnified in software. The REBIN and
CONGRID functions provide two ways to magnify or reduce an image to an arbi-
trary size.

Use REBIN for Integral Multiples (or Factors) of Images

With the REBIN function, the final dimensions must be integral multiples or fac-
tors of the original dimensions.

Thecall to REBIN is:
new_image = REBIN(old_image, cols, rows, /Sample)

where old_image isthe array expression to be re-sampled, cols and rows specify
the size of theresult and areintegral multiplesor factorsof theoriginal dimensions,
and the keyword parameter Sampleis set to use “nearest neighbor” sampling. If
Sampleisnot set, REBIN uses bilinear interpolation when magnifying, and neigh-
borhood averaging when reducing. Bilinear interpolation avoids the “chunky”
appearance of magnified pixels but takes more computer time.

For example, to display a64-by-64 imagenamed area, ina512-by-512 pixel area
using bilinear interpolation:

TV, REBIN(area, 512, 512)

or without bilinear interpolation:

TV, REBIN(area, 512, 512, /Sample)

When reducing by afactor of n-by-m, REBIN averages each n-by-m pixel neigh-
borhood. Animage may be magnified along one dimension, while at the sametime
be reduced along the other dimension. For more information on REBIN, see the
PV-WAVE Reference.

Image Magnification and Reduction 123

Use CONGRID for Arbitrary Multiples (or Factors) of
Images

CONGRID worksin asimilar fashion, except that the final dimensions can be any
arbitrary size. Thecall to CONGRID using bilinear interpolation in the resampling
agorithmis:

new_image = CONGRID(old_image, cals, rows, /Interp)

where the parameters cols and rows specify the number of columns and rows
desired in the output image. If the Interp keyword isnot set (i.e., it isequal to 0),
the nearest neighbor sampling method is used instead. For more information on
CONGRID, see the PV-WAVE Reference.

The ZOOM Function

Thereisone other way to magnify animage. On awindow system display, the con-
tents of awindow (or image) centered about the mouse position can be magnified
with the ZOOM procedure. For more information on ZOOM, see the PV-WAVE
Reference.

Retrieving Information from Images

Reading Images from the Display Device

The TVRD function reads the contents of the display device memory back into a
variable. One use for this capability isto build up a complex display using many
statements, and then read the resulting image back as a single unit for storagein a
file.

The TVRD function returns the contents of the specified rectangular portion of the
display subsystem’s memory. For example, if (X, and Y,) are the starting column
and row, respectively, of the datato be read, and Nx and Ny are the number of col-
umns and rows, respectively, to read, then an Nx-by-Ny byte array can be stored in
the variable new_image with the command:

new_image = TVRD(X,, Y;, NX, Ny)

If the system variable ! Order is set to 0 then data are read from the bottom up, oth-
erwise data are read from the top down.

124

PV-WAVE User’s Guide

Examples of How to Use the TVRD Function

Thefollowing statement inverts the 100-by-100 area of the display starting at coor-
dinate position (200, 300):
TV, NOT TVRD (200, 300, 100, 100)

; Reverse area.

The following example copies part of an image, then resizes and displays the cop-
ied portion:

x=dist (300)

tvscl,x

x_rd=tvrd(0,0,150,150)

erase

tv,x_rd

tv,rebin(x rd,300,300)

Not All Devices Can Read from the Display

Not all image devices are able to support reading pixels back from device memory.
If the current device hasthis ability, PV=WAVE setsthe eighth bit of !D.Flags. The
following statement can be used to determine if the current device allows reading
from display memory:

TEST = !D.Flags AND 128

TEST will be nonzero if the device allows such operations.

Using the Cursor with Images: TVCRS

The TV CRS procedure manipulates the cursor of theimage display. Normally, the
cursor isdisabled andisnot visible. Supplying TV CRSwith one parameter enables
or disables the cursor; supplying TV CRS with two parameters enabl es the cursor
and placesit on pixel location (X, y).

TVCRS dso takes various keywords that affect how it positions the cursor. Nota-
bly, the keywords Data, Device, and Normal specify the coordinate system. For
details, see the entry for TVCRS in the PV-WAVE Reference.

Using Color with Images

Colorisavauableaidin thevisual analysis process, becauseit can be used to take
advantage of the human brain’s capability to distinguish fine gradations of shade

Using Color with Images 125

and intensity. For this reason, color plays avery important role when viewing
images.

For color and gray-scale devices, the default is to display 8-bit images using the
color table B-W Linear (standard color table number 0).

UNIX and OpenVMS USERS On a monochrome display, by default, color
images are dithered. For more information about dithering, see Displaying Images
on 24-bit Devices (UNIX/OpenVMS) on page 130.

Color Systems

Most devices capable of displaying color usethe RGB (red, green, blue) color sys-
tem. By default, PV=WAVE represents images in the RGB color system using
triplets of values for the red, the green, and the blue components of a particular
pixel’'s color.

For more information about how image data is stored and transferred, refer to .

If you are interested in seeing a more complete discussion of color systems, refer
to Understanding Color Systems on page 273.

Using Color Tables to View Images

PV=WAVE provides two commands for viewing images: TV and TVSCL. These
two commands were introduced earlier in section Image Display Routines: TV and
TVSCL on page 120.

By default, images are displayed using color table number 0, B-W Linear. To use
acolor table other than the default, load it prior to displaying the image, as shown
in the following example:

LOADCT, 5
; Load the predefined color table number 5, Standard Gamma-II.
TV, image
—or-
TVSCL, image
; Display the image using either the TV or the TVSCL command.

PV=WAVE includes an assortment of 16 predefined color tables with enough vari-
ety to produce visually pleasing results for many applications, or you can define
your own color table. To see alist of the color tables that come standard with
PV=WAVE, refer to Loading a Predefined Color Table: LOADCT on page 279.

126

PV-WAVE User’s Guide

Loading a Different Color Table

Most color workstations cannot display more than a certain number of colors (usu-
aly 256) at once. For this reason, color tables are used to map red, green, and blue
values into the available colors on the workstation.

You can use either the TVLCT or the LOADCT procedures to load the color table
on the current device:

+ LOADCT — This procedure loads predefined color tables stored in the file
colors.tbl. Thesetables are located in:
(UNIX) <wavedir>/bin
(OpenVMS) <wavedirs: [BIN]
(Windows) <wavedir>\bin
Where <wavedir> isthe main PV=WAVE directory.

* TVLCT — Thisprocedure |oads color tables stored in user-defined variabl es.
Oncethevariablesareloaded into the color table, it isused like any other color
table.

For more information about loading the various color tables, see Experimenting
with Different Color Tables on page 277. For more information about creating cus-
tom color tables that emphasize some special trend or effect, see Modifying the
Color Tables on page 280.

Color Tables for Viewing Images

Be sure to experiment with the sixteen color tables that are included with
PV=WAVE. Frequently, atrend that is “hidden” when viewing an image with one
color table stands out with clarity when viewing the image with another color table.

The color tables that work best for viewing images are the ones that do not have
sudden transitions from one color table index to the next. Otherwise, you will prob-
ably see a strong banding or “contouring” effect that is created by the rapid
transitions between colors.

For an example of how to de-emphasize and moderate the color transitionsin a
color table, refer to Smoothing the Color Transitionsin a Color Table on page 284.

Not all Color Images are True-color Images (UNIX/

Using Color with Images 127

OpenVMS)

Windows USERS This section on true-color images does not pertain to the Win-
dows version of PV=WAVE.

Images may be output with 1, 2, 3, 4 or 8 bits per pixdl, yielding 1, 2, 16, or 256
possible colors. In addition, color images are either: 1) pseudo-color or 2) true-
color. These two approaches to storing image information are contrasted in the fol-
lowing sections.

NOTE Not all output devices allow you to control the number of bits used to rep-
resent each pixel. To seeif your device supports this capability, refer to the PV-
WAVE Reference.

Pseudo-color Images

A pseudo-color image is atwo-dimensional image, each pixel of which is used to
index the color table, thereby obtaining an RGB valuefor each possible pixel value.
An 8-bit workstation monitor usually displays pseudo-color images.

In the case of pseudo-color images of lessthan 8 bits, the number of columnsin the
image should be an exact multiple of the number of pixelsper byte. In other words,
when displaying a 2-bit image the number of columns should be even, and 4-bit
images should have a number of columns that is a multiple of 4. If the image col-
umn sizeis not an exact multiple, extrapixels with avalue of 255 are output at the
end of each row. This causes no problems if the color white isloaded into the last
color table entry, otherwise a stripe of the last (index number 255) color is drawn
to the right of the image.

True-color Images

A true-color image consists of an array with three dimensions, one of which hasa
size of three, containing the three color components. It may be considered as three
two-dimensional images, one each for the red, green, and blue components. For
example atrue-color n-by-m element image can be ordered in three ways: pixel
interleaved (3, n, m), row interleaved (n, 3, M), or image interleaved (n, m, 3). By
convention the first color is always red, the second green, and the last is blue.

True-color images are routed through the color table, just like pseudo-color

images. Thered color table array contains the intensity translation table for the red
image, and so forth. Assuming that the color table has been |oaded with the vectors
R, G, and B, apixel with acolor value of (r, g, b) is displayed with a color of (R,,

128

PV-WAVE User’s Guide

Gy, By). A color table value of 255 represents maximum intensity, while O indicates
an absence of the color.

To pass the RGB pixel values without change, load the red, green, and blue color
tables with aramp with a slope of 1.0:

TVLCT, INDGEN (256), INDGEN (256), INDGEN (256)
or with the LOADCT procedure:

LOADCT, O
; Load the standard black/white color table, B-W Linear.

Usethe True keyword of the TV and TV SCL proceduresto indicate that the image
isatrue-color image and to specify the dimension over which color isinterleaved.
Allowed values are:

1 pixel interleaving
2 row interleaving
3 image interleaving

NOTE Image interleaving is also known as band interleaving.

To see specific examples showing how to use the True keyword, see the examples
in the section Displaying I mages on 24-bit Devices (UNIX/OpenVMS) on page 130.

For more information about the different waysthat image datamay be stored, refer
to the section Input and Output of Image Data in Chapter 8 of the P\V=WAVE
Programmer’s Guide.

Displaying Images on Monochrome Devices (UNIX/
OpenVMS)

Windows USERS This section on monochrome devices does not pertain to the
Windows version of PV=WAVE.

Images are automatically dithered when sent to some monochrome devices.

Dithering is a technique which increases the number of apparent brightnesslevels
at the expense of spatial resolution. Images with 256 gray levels are displayed on
adisplay with only two brightnesses, black and white, using halftoning techniques.

PV=WAV E supports dithering for output devicesif their DEVICE procedures
accept the keywords described below:

Using Color with Images 129

Floyd — If present and nonzero, selects the Floyd-Steinberg method of dithering.
This algorithm distributes the error, caused by displaying intermediate shades in
either black or white, to surrounding pixels. This method generally gives the most
pleasing results but requires the most computation time.

Ordered — If present and nonzero, selectsthe Ordered Dither method of dithering.
Thisintroduces a pseudo-random error into the display by using a4-by-4 “dither”
matrix, yielding 16 apparent intensities. The Ordered Dither method is enabled by
defaullt.

Threshold — If present and nonzero, specifies use of the threshold algorithm — the
simplest dithering method. The value of this keyword is the threshold to be used.
This agorithm simply compares each pixel against the given threshold, usually
128. If the pixel equals or exceeds the threshold, the display pixel is set to white;
otherwise, it is black.

NOTE PostScript handles dithering directly, and does not recogni ze the keywords
listed above.

Displaying Images on 24-bit Devices (UNIX/OpenVMS)

Windows USERS This section on 24-bit devices does not pertain to the Win-
dows version of PV=WAVE.

You can use PV=WAVE to display imagesin 24-bit color. Naturally, your worksta-
tion must support 24-bit color mode if you intend to view 24-bit images with
PV=-WAVE. Similarly, hardcopy devices must support 24-bit color mode if you
intend to send 24-bit color output to them. To find out if your device hasthis capa-
bility, see the PV-WAVE Reference.

NOTE 24-bit images may be either square or rectangular; they can be either pixel,
row, or image interleaved. Thereis no restriction placed on the size of images by
PV=WAV E; the limiting factors are the maximum amount of virtual memory avail-
able to you by the operating system and the processing time required.

Refer to the examples|ater in this section for more information about how to read
and display 24-bit images with PV=WAVE. For a comparison of true-color and
pseudo-color images, refer to Not all Color Images are True-color Images (UNIX/
OpenVMS) on page 127.

130

PV-WAVE User’s Guide

Example: Read and Display a 24-bit Image-interleaved Image

This example reads 24-bit image datafrom afile, and then displaystheimagein a
window using 24-bit color. The 24-hit image is stored in afile as a set of stacked
images, 512-by-512-by-3 deep (first the 512-by-512 red plane, then the 512-by-
512 green plane, and then the 512-by-512 blue plane). The display deviceisan X-
compatible device, and is capable of displaying 24-bit color:

DEVICE, Direct Color=24
; Define a DirectColor graphics window.
status = DC_READ 24 BIT(’jl.img’, img, Org=1)
; Read the 24-bit image from a file; DC_READ_24_BIT
; handles the opening and closing of the file. The variable ‘img’ now

; contains a 512-by-512-by-3 image array. Org=1 tells
; DC_READ_24_BIT that the file is image interleaved (as opposed to pixel interleaved).

TV, img, True = 3
—or-

TVSCL, img, True = 3
; Display the 24-bit image using either the TV or the TVSCL
; procedures. The True keyword specifies the dimension over which
; the color is interleaved.

Example: Read and Display a 24-bit Image Stored in Three Different
Files

This example reads 24-bit image data that has been stored in three separate image
files— onered, one green, and one blue. Each fileisread separately and then com-
bined in one 3D array prior to displaying the 24-bit image. The data used in the
example comes from the red, green, and blue images of Boulder in the

SWAVE DIR/data area Theuse of environment variablesin this example
makes it a UNIX-specific example, athough it can easily be adapted for usein an
OpenVMS environment, as well:

DEVICE, Direct Color=24
; Define a DirectColor graphics window.

red = MAKE ARRAY (477, 512, /Byte)
green = red

blue = red
; Define three 477-by-512 variables to hold the image data.
; Each variable holds one “plane” of the data.

OPENR, 1, GETENV(’'WAVE DATA’) + $
" /boulder red.img’

READU, 1, red

Using Color with Images 131

CLOSE, 1

OPENR, 1, GETENV(’'WAVE DATA’) + $
" /boulder grn.img’

READU, 1, green
CLOSE, 1

OPENR, 1, GETENV(’'WAVE DATA’) + $
" /boulder blu.img’

READU, 1, blue

CLOSE, 1

; Read each plane (red, green, and blue) of the image, placing the
; data in three different variables.

img = MAKE_ARRAY (477, 512, 3, /Byte)
img(*, *, 0) = red

img(*, *, 1) = green

img(*, *, 2) = blue

; Create a 3D 24-bit image array and transfer each plane of the
; image into it.

TV, img, True = 3
—or-

TVSCL, img, True = 3

; Display the 24-bit image using either the TV or the TVSCL
; procedures. The True keyword specifies the dimension over which
; the color is interleaved.

NOTE Thisexample could have dso used DC_READ_8 BIT to read the image
data, and then the datafiles would not have had to be explicitly opened and closed.
For more information about this function, seethe DC_READ_8 BIT description
in the PV-WAVE Reference.

Gray Level Transformations

Each pixel, or cell, in animage exhibits an intensity. By modifying the distribution
of intensities it is possible to produce an image more suitable for a given applica
tion than the original. Of course, a suitable image for one application is not
necessarily the best image for another application. The viewer isthe ultimate judge
of how well a particular method works. Evaluating image quality isahighly sub-
jective process.

132

PV-WAVE User’s Guide

There are two ways to modify image intensities:
» modify the pixels and re-write the image on the display, or
* modify the color trandation tables without changing the pixels.

The second method is faster because the color translation tables contain less infor-
mation than the pixel memory, but it is not always practical because the original
image may contain more discrete values than are representabl e in the display
memory.

Thresholding, the Simplest Gray-level Transformation

The simplest example of agray-level transformation isto produce atwo-level map-
ping from all the possible intensities into black and white. If an image stored in a
variable named A contains an object in which each pixel has an intensity value
greater than s, a scalar, and pixels that are not part of the object have avalue less
than g, then the statement:

TVSCL, A GT S
will display all pixelsinthe object asfull white and all background pixels as black.

Therelational operators, EQ, NE, GE, GT, LE and LT, produce avalue of 1if the
relationistrueand Oif therelation isfalse. When applied to images, therelation is
applied to each pixel and an image of 1'sand O’'sresults.

For example, theexpression A GT S isanimagewithavaueof 1ineach element
where the corresponding element of A is greater than S; otherwise the element is
set to 0. The TV SCL procedure then scalesthe image of 1'sand 0'sinto 255's and
O's.

Of course, the opposite effect is obtained by the statement:

TVSCL, A LE S

All pixelswhose value is greater than S but lessthan T are displayed as white with
the following statement:

TVSCL, (A GT S) AND (A LT T)

Thresholding using Color Table Modification

If the original image scales into the range of integers representable in the display
memory, the thresholding operators in the previous section may be implemented
more efficiently by changing the color trandation tables. For example, if a256-ele-
ment gray scale color table is appropriate, elementslessthan S become white with
the following statements:

T = 255 * (INDGEN(256) LT S)

Gray Level Transformations 133

; Elements less than S are 255, others are 0.

TVLCT, T, T, T
; Load the color table from T.

Contrast Enhancement

Animage may be contrast-enhanced so that any subrange of pixel valuesare scaled
tofill the entire range of displayed brightnesses. For instance, if the image in vari-
able A contains an object superimposed on a varying background, and the pixel
valuesin the object range from avalue of S to the brightest value in the entire
image, the statement:

TVSCL, A > S
will use the entire range of display brightnesses to display the object.

The > operator, called the maximum operator, yields aresult equal to the larger of
itstwo operands. Theexpression2 > S isanimageinwhich each pixel in 2 less
than sissetto S. S becomesthe new minimum intensity. The TV SCL procedure
then scales the new image from 0 to 255 before loading it into the display. Again,
theimage A is not changed.

If, for example, the object in A has values from 2.6 to 9.4, the statement:
TVSCL, A > 2.6 < 9.4

truncates the image so that 2.6 is the new minimum and 9.4 is the new maximum
before scaling and display. Pixelswith intensities of 9.4 or larger will be displayed
at full brightness, while those with intensities of 2.6 or less are converted to mini-
mum brightness.

Using BYTSCL to Enhance Contrast

TheBY TSCL function can be used to enhance the contrast of imagesin amore effi-
cient manner than the examples above. The result of this function is a byte image
made by scaling the input image as follows:

Ry =T (Ix,y —Min) / (Max — Min)

wherel, , istheintensity value at imagelocation (X, y). Thevalue of T may be spec-
ified using the Top keyword parameter. Its default value is 255.

X1y

If BY TSCL iscalled with only one parameter, the maximum and minimum values
are obtained by scanning the image parameter. You may directly specify the mini-
mum and maximum values with keyword parameters. For example, the statement

TV, BYTSCL(A, MIN = 2.6, MAX = 9.4)

134

PV-WAVE User’s Guide

has exactly the same effect as the TV SCL statement in the previous section,
stretching the contrast of pixels ranging from 2.6 to 9.4, but this statement is con-
siderably quicker. Using BY TSCL is more efficient because the range truncation
and scaling are performed in one pass, rather than in the four required by the
TVSCL statement.

Modifying Color Tables to Enhance Contrast

If the image contains pixelsin the range of 0 to 255, asin the case of an 8-bit dis-
play, or it can be transformed to 256 or fewer values, it is faster to modify the
display color lookup tablesrather than transforming theimage in the computer and
then loading the display. The STRETCH procedure allows any range of values
between 0 and 255 to be linearly expanded to fill the display range.

For more information about stretching color tables, see Sretching the Color Table
on page 284, or refer to the STRETCH procedure in the PV-WAVE Reference.

Histogram Equalization

In many images, most pixelsresidein afew small subranges of the possible values.
By spreading the distribution so that each range of pixel values contains an approx-
imately equal number of members, the information content of the display is
maximized.

To equalize the histogram of display values, the count-intensity histogram of the
imageisrequired. Thisisavector in which the ith element contains the number of
pixels with an intensity equal to the minimum pixel value of theimage plusi. The
vector is of longword type and has one more element than the difference between
the maximum and minimum values in the image. (This assumes abinsize of 1 and
animagethat isnot of bytetype.) The sum of all the elementsin the vector isequal
to the number of pixelsin the image.

The HISTOGRAM function directly returns the count-intensity histogram. For
example, to define anew variable H that contains the count-intensity histogram of
theimage 2, type:

H = HISTOGRAM(A)

Optional keyword parameters may be included to specify the range and binsize,
determine the minimum value of the image, etc.

From the count-intensity histogram, the cumulative distribution function is com-
puted with the statements:

P =H

FOR i = 1, N _ELEMENTS(P)-1 DO P(i)= P(i) + P(i-1)

Gray Level Transformations 135

P, now containsthe number of pixelsintheoriginal imagewith intensitieslessthan
or equal toi:

i
= 2 H
i-o

P; increases monotonically from the minimum value of theimage to the number of
pixelsin theimage.

By simply normalizing P so that its maximum element has a value of 255 and its
minimum element has avalue of 0, the gray level transformation necessary to dis-
play the image with histogram equalization is obtained:

P = BYTSCL(P)

The statement:

TVLCT, P, P, P

loads the three display color trandlation tables with the transformed function. The
result is a black and white histogram- equalized display.

The HIST_EQUAL_CT procedure loads the color tables with a histogram equal-
ized distribution, as described above. If called with no parameters, this procedure
allows the user to mark arectangular region of the display with the mouse, which
is then used to form the distribution. It can also be called with an image asits
parameter, in which case it uses the pixel distribution of the entire image.

Example of Histogram Equalization

Thetop plot of Figure 6-1 showsthe count-intensity histogram of an original aeria
image of the New York city area. The dashed lineisthe cumulativeintegral of this
function, showing the number of pixelsin theimage with valuesless than or equal
to each pixel value.

136

PV-WAVE User’s Guide

Original Histogram

5.0+10%F 1.2410° g
4_0.104§ 7777777777777 —1.0+10° g
c E = 5
£ s0m10C 8.0+10" &
E JE —6.0+10° °
§ 20m0 3 Jaomos 3
1.0.1042, _ ___ Cumulative {5 0e105 E
0E 30 o
0 50 100 150 200
Pixel Value
Histogram Equalized
5.0+10%F 1.2¢10° g
4.0:10°E J1.0:10° 5
c E | 5 o
£ 3010° Cumulati 800" 8
2 200t HTAEE 38010 o
g 14.010° B
1.0010%§ 12,0010 E
0 1§

0 50 100 150 200 20 300
Pixel Value

Figure 6-1 Histograms of the original and histogram-equalized images.

It is apparent that the pixel intensities range from approximately 40 to 140, imply-
ing that only about 40% of the usable brightness range of the display is used.

The bottom plot showsthe pixd distribution histogram of the histogram-equalized
image. Note that the histogram is spread over a much larger range and that the
shape is somewhat flattened. Not all the valuesin this histogram are equal. Thisis
due to the discrete bin size of the histogram and because there are unpopul ated
pixel ranges.

The cumulative integral of the histogram is nearly a straight line, from the origin
to an x value of the maximum pixel value and ay value equal to the number of pix-
els, asit should be.

The HIST_EQUAL function performs histogram equalization using this method.
The following statement uses HIST_EQUAL to transform the image 2 and then
display the result:

TV, HIST EQUAL (A)
Asdescribed above, the HIST_EQUAL _CT procedure is more efficient because it

maodifies the color tables, rather than the image. The following two statements dis-
play the image, and then load the modified color tables:

TV, A
HIST EQUAL CT, A

Note that this method will only work if the original image containsintegersin the
range of 0 to 255.

Gray Level Transformations 137

Image Smoothing

The SMOOTH and MEDIAN functions are used to smooth images.

The SMOOTH Function

Images may berapidly smoothed with the SMOOTH function. SMOOTH performs
equally weighted smoothing using a square neighborhood of a given odd width. If
Aisanimage of any type or size, the statement:

TVSCL, SMOOTH (A, 3)

displaysthe result of smoothing the image 2 with a 3-by-3 boxcar average.
Smoothing with the triangular kernel:

123
242
121

which approximates atwo-dimensional triangleis easily implemented using the
CONVOL function by the statement:
TVSCL, CONVOL(A,[[1,2,11,[2,4,21,11,2,111)

Thefirst parameter, 2, in the CONVOL function call, usually animage, is con-
volved with the second parameter, usually a much smaller kernel array of weights.
The second parameter:

(r1,2,11,12,4,21,1[1,2,1]]

isthe notation for a3-by-3 array containing thekernel. Thebracket [1 symbolsare
the array concatenation operators. Elements between the brackets, which may be
scalars, vectors or arrays, are concatenated.

The same technique may be used for other types of smoothing, interpolation, or dif-
ferentiation by merely changing the size and weights of the kernel parameter.

Median Smoothing with the MEDIAN Function

Median smoothing is a useful technique that is similar to mean smoothing asit is
implemented by the SMOQOTH function, except that the value of each pixel is
replaced by the median of the N-by-N neighborhood rather than by the average.

M edian smoothing, unlike mean smoothing, does not blur edges or features whose
sizeislarger than the neighborhood. Also, median smoothing eliminates, without

138

PV-WAVE User’s Guide

spreading, “salt and pepper” noise (isolated pixels containing extreme values).
Median smoothing isimplemented with the MEDIAN function:

TVSCL, MEDIAN(A, 3)

Figure 6-2 showsthe effect of median and mean filters on aone-dimensional vector
containing an impulse step function. Notice how the impulseis eliminated by the
median filter rather than spread over the neighborhood of thefilter asit isin the
mean filter.

Filter Responses
200 i T i

150 — —

100 Original

| 5 Point Median

| 5 Point Mean

Figure 6-2 Signal response using median and mean filtering.

Image Sharpening

This section discusses some image sharpening methods. For more details on the
functions described here, see the PV-WAVE Reference.

The ROBERTS Function

Animage may be sharpened (its edges or high spatial frequency components
enhanced) by differentiation. One approximation to the derivative or gradient of the
imageisthe Roberts Gradient, aform of crossdifference, which iscomputed using
the formula:

(Fx,y) = ‘Fx,y_Fx+ Ly+ 1‘ + “:x+1,y_Fx,y+1‘

The ROBERTS function returns this result.

Image Sharpening 139

The SOBEL Function

Another commonly used gradient operator isthe Sobel operator. It operates over a
3-by-3 region, making it less sensitive to noise than an operator with a smaller
neighborhood. The SOBEL function returns an approximation to the Sobel
operator:

-1-2-1 |-101
Sy=|0 0 0|t|-202
12 1| |-101

where the notation,

Wo Wy W,

W3 W, Ws

We W7 Wg
indicates the absolute value of the sum of the pixels in the 3-by-3 neighborhood
surrounding the pixel at x, y, multiplied by the respective weights. The first term

approximates the gradient in the y direction and the second term approximates the
gradient in the x direction.

Unsharp Masking Method

Another method of sharpening images is unsharp masking. This method subtracts
asmoothed image (which contains only low frequency components) from the orig-
inal image, leaving an image containing only high frequency components. This
process emphasizes the edges and small, sharp features. To unsharp mask and dis-
play an image using a 3-by-3 neighborhood, use the command:

TVSCL, A - SMOOTH (A, 3)

The CONVOL Function

The same result can be obtained by convolving the image with the kernel:
O
30
IORERE

140 PV-WAVE User’s Guide

or:
TvscL, convon(a, [([-1,-1,-1],(-1,8,-1], [-1,-1,-111,9)

The time required by the CONVOL function can become excessively long when
the kernel or image islarge. Thetime required is proportional to n?n?, wherenis
the size of the kernel and misthe size of the squareimage. Doubling the size of the
kernel increases the time by afactor of four. The algorithm used in the SMOOTH
function requires time in proportion to 2nnm?, implying that it is almost always
more efficient to use SMOQOTH rather than CONVOL where possible.

Frequency Domain Techniques

Filtering in the frequency domain isaflexible techniquethat isused for smoothing,
sharpening, deblurring, and image restoration. The three basic steps in image fil -
tering are:

@ Transforming the image into the frequency domain.

Q Multiplying the resulting complex image by afilter that usually has only real
values.

Q Re-transforming this product back into the spatial domain, yielding thefiltered
image.

Assuming that A istheimage to befiltered and £i1ter isthe variable containing
thefilter, this processis expressed by:

result = FFT(FFT (A, -1) * filter, 1)

The variable 2 may be of any datatype except string; filter isafloating type
filter and hasthe samedimensionsas2; and resul t isthe resulting image which
is of complex type and has the same size as 2. The second parameter of FFT spec-
ifiesthe direction of thetransform: —1 for spaceto frequency; and +1 for frequency
to space.

This processis equivalent to convolving the image with the spatial equivalent of
thefilter in the spatial domain, but is much quicker than simple convolution for ker-
nels larger than approximately 9-by-9.

CAUTION Try to avoid wrap-around artifactswhen filtering and convolving in the
frequency domain. In particular, images must be properly windowed and sampled
before applying the Fourier Transform or false and misleading values will result.
For one example of windowing, see the source code for the HANNING procedure
in the Standard Library.

Frequency Domain Techniques 141

Filtering Images

Many types of images can be improved by filtering. PV=WAVE's array-oriented
operators and functions make it particularly easy to design and use filters. Many
commonly used filters take advantage of what is called the frequency image. The
frequency image, D, of an n-by-n array in which each pixel element contains the
spatial frequency of the pixel in units of cycles per pixel is given by:

D,y = J(X/M)+(y/n)?

where:

< = (x if (x<n/2)
n—x otherwise

x if (x<n/2)
y = (:
n—y otherwise

The Standard Library function DIST evaluates the function above and returns afre-
guency image. For example, to obtain afrequency image to use with afilter for a
256-by-256 image, use the command:

D = DIST(256)
Some of the many filters which can be computed from the frequency imagein one

step are given below. The mathematical description of thefilter is given firgt, fol-
lowed by the PV=WAVE code to implement it.

* ldeal low passfilter, absolute cutoff at frequency Dy
1 if(D D
filter,, = (" (Buy<Do)
' 0 otherwise

filter = D LT DO
* ldeal high passfilter, absolute cutoff at D:
1 if(D,,>D
filteruvz((Buv .0)
otherwise

filter = D GT DO
» ldeal bandpassfilter, absolute cutoff at D, and D,;:

142

PV-WAVE User’s Guide

1if (D <D, ,<Dy)

filter, . = (
Wy 0 otherwise

filter = (D GT DL) AND (D LT DH)
» Butterworth low passfilter of order n, cutoff at D,: (The frequency response at
the cutoff frequency is equal to 50% of the maximum.)

1

filteru’v = W_‘

filter = 1/(1+(D/D0) *(2*N))

« Butterworth high passfilter of order n, cutoff at D —O:

1

filteru,v = m

filter = 1/ (1 + (D0/D) * (2*N))

» Butterworth bandpass filter, order n, center frequency is C, width of D

1

filter, , =
LYo+ [(Du,\,—C)/Do]2n

A

filter = 1/ (1+((D-C)/DO) (2*N))
» Exponential low passfilter of order n:

filter,, = ePxy/Po"

A

filter = EXP (- (D/DO) N)

» Exponential high pass filter of order n:

filter,, = ePo/Dxy)’

filter = EXP(- (D0/D) * N)

The filters described here must be applied in the frequency domain. To use these
filterstheimage must be transformed to the frequency domain with the Fast Fourier
Transform, multiplied by the filter, and then transformed back to the spatial
domain.

Frequency Domain Techniques 143

The following command is used to apply afilter to the variable image:

filtered image = FFT(FFT(image, -1) * filter, 1)

Displaying the Fourier Spectrum

PV=WAVE makes it easy to calculate the Fourier spectrum of an image.

Figure 6-3 shows an aerial photograph on the left and its logarithmically scaled
Fourier spectrum on the right. Note that the diagonal, vertical, and horizontal lines
in the Fourier spectrum correspond to the roads in the original image and are
perpendicular to them.

Figure 6-3 An aerial photograph and its Fourier spectrum.

The Fourier spectrum is also displayed in Figure 6-4 as a surface plot.

144

PV-WAVE User’s Guide

5
2.0%10

5
1.5%10

5
1.0x10

4
5.0%10

Figure 6-4 Surface plot of the aerial photograph’s Fourier spectrum.

Itiscustomary to display the Fourier or power spectrum of imageswith the DC fre-
guency component in the center of the image, asis done here. Thisis easily
accomplished by using the SHIFT function to shift the origin of the 256-by-256
image to the center. The Fourier spectrum in the right side of Figure 6-3 is pro-
duced with the statement:

TVSCL, SHIFT(ALOG(ABS(FFT(A, -1))),256, 256)

This statement performs the following operations:

Q

Q
Q
Q

U

The FFT function transforms the image into the frequency domain.
The ABS function cal culates the magnitude of each complex-valued pixel.
The ALOG function returns the natural logarithm of each pixel.

The SHIFT function shifts the image so the point with a subscript of (0, 0) is
in the center.

The TV SCL procedure scales and displays the result.

Frequency Domain Techniques 145

Geometric Transformations

Geometric transformations rearrange the elements of an image. Some exampl es of
commonly used geometric transformations are: magnification, rotation, projection
to different coordinate systems, and correction of distortions.

The definition of a geometric transformation may be written:

9%, y) = f(u, v) = fla(x, y), b(x, y)]

wheref(u, v) istheinput image, g(x, y) isthe output image, and the functionsa and
b specify the spatial transformation that relate the (X, y) coordinate system of the
output image to the (u, v) coordinates of the input image.

Rotating and Transposing with the ROTATE Function

The simple and common operations of rotation by multiples of 90 degrees and/or
transposition are performed most efficiently by the ROTATE function. The calling
sequence for the ROTATE function is

ROTATE(image, rotation)

whereimageistheinput array and rotation isan integer val ue specifying one of the
eight possible combinations of axis interchange and reversal.

Example of ROTATE Function Usage

For example, a 90 degree counterclockwise rotation of an m-by-n imageis
expressed in the above notation by:

rotated image = ROTATE (image, 1)

You can aso usethe ROT function to rotate animage. It uses POLY _2D (described
in the next section) to rotate an image about a specified point with optional magni-
fication or reduction. The rotation angleis not restricted to multiples of 90 degrees
asin ROTATE, but ROT isslower. For moreinformation on these functions, seethe
PV-WAVE Reference.

Geometric Transformations with the POLY_2D Function

The POLY _2D function provides an efficient method of performing geometric
transformations, assuming the functions a and b can be expressed as N-degree
polynomials of x and y:

146

PV-WAVE User’s Guide

N N
axy) =Y C Xy

i=0j=0

N N
b(x.y) = 3 Y DXy

i=0j=0

Either the nearest neighbor or bilinear interpolation methods may be selected. The
calling sequence and a brief description of the input parametersfor the POLY 2D
function is asfollows.

output_image = POLY_2D(image, c, d [, interp [, dim,, dim/]])
Where
image — The input image.

¢ and d — The arrays containing the polynomial coefficients. Each array
must contain (N + 1) elements. For example, for alinear transformation
C and D contain four elements, and may be a two-by-two array or afour-
element vector. C;; contains the coefficient used to determine u, and isthe
weight of the term x'y'. The POLY WARP procedure may be used to fit (u,
v) asafunction of (X, y). It returns the coefficient arrays C and D.

interp — If present and non-zero, selects bilinear interpolation, otherwise
the nearest neighbor method isused. For thelinear case (i.e. N=1) bilinear
interpolation requires approximately twice as much time as does the near-
est neighbor method.

dim, and dim, — Specify thedimensions of the result. If omitted, the result
will have the same dimensions as the original image.

In addition, the output keyword parameter Missing may be included to specify the
output value of pixels whose u, v coordinates are outside the input image. If this
keyword parameter is not present, missing values are extrapolated from the edges
of theinput image. For more detailed information onthe POLY _2D function, refer
to the function description in the PV-WAVE Reference.

Efficiency and Accuracy of Interpolation

POLY _2D isrelatively efficient; however, some of this efficiency is gained at the
expense of accuracy. Each output pixel is mapped to the input image and the near-
est pixel isused for the result. This method is called the nearest neighbor method.

Geometric Transformations 147

With high magnifications of regular structure, objectionable sawtooth edges resullt.
Bilinear interpolation avoids this effect by determining the value of each output
pixel by interpolating from the four neighbors of actual location in the input image
at the expense of additional computations.

Correcting Linear Distortion with Control Points

The following example uses POLY 2D to correct alinear distortion using control
points. A calibration image containing n known pointsisacquired by asystemwith
linear distortion. Given the original position of each point in the calibration image,
(%, y) and its measured coordinates in the acquired image, (u, v), it is possible to
obtain the polynomial coefficients required to transform the acquired image back
tothe original.

The value of n must be at least four to determine the coefficients of afirst degree
transformation, asthere are (n + 1)? coefficientsin each array, each of whichisan
unknown to be solved. In this example, four points are measured which describe
the pixel coordinates of the corners of abox in the undistorted calibration image:
(20, 20), (40, 20), (40, 40), (20, 40). The measured coordinates of the corners of
the box, which is distorted into the shape of atrapezoid in the acquired image, are
assumed to be: (25, 25), (55, 25), (60, 50), (25, 50). See Figure 6-5.

The equations relating the (u, v) coordinatesto (X, y) are:

U = Cu+ ey +CX +cgyi% , 1=0,1,2,3

i = do+dyy;+dyx+dyx , 1=0,1,2,3

We can write the four equations for u; as:

u=2C

148 PV-WAVE User’s Guide

o Example of Distortion Correction
T T T T T T T T T

60— =

20—

Figure 6-5 Example of geometric distortion.

where C = [¢y, €y, C,, G5, and

1 Yo Xo XoYo
7 = 1yy X Xpy;
1y Xy XY
1y3 X3 X3Y3
Solving for C and D:

C=zU D=z
The statements implementing this algorithm are:

x = [20, 40, 40, 20]

; Define undistorted x coordinates of box.
y = [20, 20, 40, 40]

;..andy.
u = [25, 55, 60, 25]

; Measured coordinates...
v = [25, 25, 50, 50]

z = FLTARR (4,4)
; Define the Z matrix.

Geometric Transformations 149

FOR j=0,1 DO for k=0,1 DO z(0,j+2*k) = x"k * y™j
; Fill it, one row at a time.

image = BYTARR(100, 100)
; Create a 100-by-100 image.

image (POLYFILLV (u, v, 100, 100)) = 128
; Simulate the acquired image by filling the pixels inside the (u, v) box
; with the value 128.
g = POLY 2D(image, (c = INVERT(z) # u), $
(d = INVERT(z) # v), 1)
; Solve the equations, using the INVERT function, and
; apply the geometric transformation, yielding image q, saving
; coefficients in ¢ and d.

The computed values of ¢ and d are[0.0, —0.25, 1.25, 0.0125], and [0.0, 1.25, 0.0,
0.0].

Figure 6-6 illustrates the application of this geometric transformation to an image.
The left side of this figure contains the trapezoid defined by the distorted coordi-
nates of the “acquired” image. Theright sideisthe result of the transformation, as
the trapezoid is warped back to the original rectangular shape.

Figure 6-6 Correcting a geometric transformation.

The POLY WARP procedure may be used to obtain the polynomial coefficientsin
amore general manner. It is not restricted to first- order polynomials, and it com-
putes a least squares fit if there are more than (n + 1)2 control points. For more
information on the POLY WARP procedure, see its description in the PV-WAVE
Reference.

150

PV-WAVE User’s Guide

Mathematical Morphology

M athematical morphology is an approach to image processing that is based on
shape. If mathematical morphology is used appropriately, image data can be sim-
plified without losing essential shape characteristics. It plays a particularly
important role in those image processing applications that depend on object or fea-
ture recognition. For example, some manufacturing defects correlate directly with
shape and can be discovered with this approach to image processing.

Mathematical morphology isbased on set theory; sets represent the vari ous shapes
that are manifested on binary or gray scale images. Dilation is the morphological
transformation that combines two sets using vector addition of set elements. Itis
implemented with the DILATE function. The dilation operator is commonly
known as the “fill,” “expand,” or “grow” operator. It isused to fill “holes’ in the
image that are equal to or smaller in size than a particular structuring element.

Erosion isthe morphological opposite of dilation. It isthe morphological transfor-
mation that combinestwo sets using the vector subtraction of set elements. Erosion
isimplemented with the ERODE function. The erosion operator is commonly
known asthe“shrink” or “reduce” operator. Itisused to reduceislandssmaller than
aparticular structuring element.

Complete descriptions of the DILATE and ERODE functions are given in the PV-
WAVE Reference. Additional information on mathematical morphology in general

can befound in the article “Image Analysis Using Mathematical Morphology” by
Haralick, Sternberg, and Zhuang, found in the IEEE Transaction on Pattern Anal-
ysis and Machine Intelligence, Vol. PAMI-9, No.4, July, 1987.

Mathematical Morphology 151

152 PV-WAVE User’s Guide

Rendering Techniques

PV-WAVE can render 3D geometric and volumetric data through the use of your
graphics hardware using PV-WAV E's integration with the Visualization Toolkit
(VTK) or through software using rendering algorithms built into PV-WAVE.

Besides faster 3D graphics, VTK supports techniques such as the ability to rotate
and manipulate 3D viewsin real-time, do real-time displays of volumetric data, and
enhanced functionality for static 3D rendering in 24-bit color. The end user can
gaininsight about their datathough interacting, visualizing and analyzing datareal
time with the VTK utilities.

The advanced rendering routines built into PV-WAV E use software to display geo-
metric and volumetric data. Three rendering techniques are available including;
polygon and volume rendering and ray-tracing techniques. In addition, gridding
algorithms and coordinate conversion functions are available to prepare data for
rendering.

Hardware Rendering

Introduction

PV-WAV E users can create high quality, interactive graphicsthrough the use of the
PV-WAVE link to the Visualization Toolkit (VTK). The Visualization Toolkit isan
Open Source toolkit for creating both simple and complex visualizationsin 3D

using OpenGL, alow-level software interface to graphics hardware, for high-per-
formance, accelerated graphics. In addition to convenience routines that have been
written to access some of the more common VTK utilities, all of the functionality

153

available in the Visualization Toolkit is available to PV-WAVE users. The two
products complement each other well. PV-WAVE excels at data access, data
manipulation, numerical agorithms, datafiltering, user interface devel opment, and
many interactive 2D graphical tasks. The Visualization Toolkit is a best-of-breed
tool for creating complex 3D visualizations. Together they provide a simple and
quick way to build tools for Visual Data Analysis.

TheVTK toolkit wasintegrated into PV-WAV E through the use of aTcl shell asan
intermediary. Tcl isapopular scripting language, see http: //www.scriptics.comfor
moreinformation. The VTK toolkit aready hasabinding for the Tcl language. PV-
WAV E spawns a Tcl shell and communicates with it using sockets, sending VTK

commands formatted for Tcl.

The following diagram shows how the two routines vtkINIT and vtk COMMAND
are used to create the Tcl shell and send commands to it, including VTK
commands:

VW AVE Tcl/Tlk
wtkIMIT Spawn .
tkCOMMAMD
v > VTR
Tel command

and reply

Thevtk COMMAND procedureisused in PV-WAV E to send individual commands
to the shell, and higher level wrappers have been built around thisto allow many
common PV-WAV E plotting commandsto be accessed in amanner similar to exist-
ing PV-WAV E commands. Some of these commands include vtk WINDOW,
VtkLIGHT, vtkPLOTS, vtkSURFACE, and vtkPOLY SHADE. The full power of
the VTK visualization pipeline can still be accessed but requires specific knowl-
edge of the VTK objects and methods.

A set of commandsfor packaging datainto one of five supported datatypesin VTK
is also provided, allowing datato be easily sent from PV-WAVE to VTK.

Many procedures have a“Name”’ keyword which allows you to either choose a
name for the object you are creating or return agenerated one. Thisactsasabridge
between the high-level PV-WAV E wrappersand low-level VTK functionality. Thus

154

PV-WAVE User’s Guide

you can create a vtkSURFACE object and later use low-level VTK commandsto
change specific properties of this object.

Currently the VTK windows can not beintegrated into auser interface created with
PV-WAV E widgets. However, widgets can be used to size, position and annotate an
object inaVTK window by passing keywords from the widget to the

vtk WINDOW.

NOTE the PV-WAVE link to the Visuadlization Toolkit is available on Windows
and most UNIX platforms

Additional Information

You can download the Visualization Toolkit and reference documentation from
<http:// public.kitware.com>. You can also purchase the following VTK manuals
at this site:

The Visualization Toolkit User's Guide
William J. Schroeder, Lisa S. Avila,
Kenneth M. Martin, William A. Hoffman,
C. CharlesLaw

380 pages, CD-ROM with software/data
ISBN 1-930934-05-X

Kitware, Inc.

The Visualization Toolkit

An Object-Oriented Approach To 3D Graphics

Will Schroeder, Ken Martin, Bill Lorensen

646 pages, 40 color pages, CD-ROM with software/data
ISBN 0-13-954694-4

Prentice Hall

The Visualization Toolkit User's Guideisthe best manual for detailsonusing VTK.
The Visualization Toolkit manual has more general information on computer graph-
ics and scientific visualization.

Demonstration Programs

There are three sources for advanced rendering demonstration programs:
* You can run the demonstration programs and look at the code in:
(UNIX) <vni dirs>/vtk-3_2/demo

Hardware Rendering 155

(Windows) %VNI DIR%\vtk-3 2\demo
Where <VNI_ DIR> isthe main Visual Numerics directory.
These routines can be easily modified to work with your own data.

Initializing VTK and Managing VTK Windows

TheroutinevtkINIT isused to spawn aTcl processthrough which VTK commands
may be sent. The spawned process will continue executing until vikCLOSE is
called. Repeatedly calling vtkINIT will not cause multiple Tcl processesto be cre-
ated; only onewill bealowed to run at any giventimefor aPV-WAVE session. You
can use the /Print parameter to vtkINIT to cause debug information from the Tcl
processto be logged in the PV-WAVE console. Most VTK wrapper routines, with
the exception of vikCOMMAND and the dataset creation routines, will automati-
cally call vtkINIT for you if you have not done so manually.

NOTE Youmust call vtkCL OSE before exiting PV-WAV E or elsean orphaned Tcl
processwill beleft running onyour machine. This processwill only go away if you
manually Kill it or log off of your computer.

To create aVTK window in which 3D OpenGL graphics can be rendered, use the
vtk WINDOW command. It isused in amanner similar to the WINDOW command
for PV-WAV E windows. You can specify awindow index to be used to refer to this
window, or use/Freeto alow an unused index to be chosen for you. There are two
important keywords for vtk WINDOW that affect how 3D objects are displayed in
it: /NoRender and /Nolnteract.

Normally VTK windows operate much like PV-WAV E windows, in that as you
issue commandsto add plots, annotation, axes and other objectsto the window, the
results areimmediately rendered and displayed. For performance reasons you do
not always want to do this for VTK windows, and would rather add all of the
objects to be rendered before actually rendering and displaying the scene. If you
specify /INoRender in acall to vikWINDOW, then you are turning off automatic
rendering until you explicitly call the vikRENDERWINDOW routine. Use of the
/NoRender routine does not affect calls to the low-level vikCOMMAND routine.

By default VTK windows have a set of mouse interactions built into them. This
allows you to rotate, zoom, and pan your view interactively. If you do not want
these default interactions then specify /Nolnteract with vtkWINDOW and any
changesin cameraview will be under programmatic control only. The default
mouse interaction for VTK windows including the following features:

156

PV-WAVE User’s Guide

Keypress| / Keypresst: toggles between joystick (position sensitive) and track-
ball (motion sensitive) styles. In joystick style, motion occurs continuously as
long as a mouse button is pressed. In trackball style, motion occurs when the

mouse button is pressed and the mouse pointer moves.

Keypress c / Keypress o: toggles between camera and object (actor) modes. In
camera mode, mouse events affect the camera position and focal point. In
object mode, mouse events affect the actor that is under the mouse pointer.

Button 1: rotates the camera around its focal point (if camera mode) or rotate
the actor around its origin (if actor mode). The rotation isin the direction
defined from the center of the renderer's viewport towards the mouse position.
Injoystick mode, the magnitude of the rotation is determined by the distance
the mouse is from the center of the render window.

Button 2: pans the camera (if camera mode) or trandlate the actor (if object
mode). In joystick mode, the direction of pan or tranglation is from the center
of the viewport towards the mouse position. In trackball mode, the direction of
motion is the direction the mouse moves. (Note: with 2-button mice, pan is
defined as <Shift>-Button 1.)

Button 3: zooms the camera (if camera mode) or scale the actor (if object
mode). Zoom in/increase scale if the mouse position isin the top half of the
viewport; zoom out/decrease scale if the mouse position isin the bottom half.
In joystick mode, the amount of zoom is controlled by the distance of the
mouse pointer from the horizontal centerline of the window.

Keypressr: resets the camera view along the current view direction. Centers
the actors and moves the camera so that al actors are visible.

Keypress s. modifies the representation of al actors so that they are surfaces.
Keypressw: modifiesthe representation of all actors so that they arewireframe.

The following routines operate exactly like their PV-WAV E counterparts to man-

age windows:
VtkERASE Erases the VTK window to its background color or
specify a new background color.
VtKWSET MakesaVTK window the current one to bedrawntoin

subsequent callsto VTK wrapper routines.

VtkWDELETE DeletesaVTK window (but does not close the Tcl pro-
cess, you still must call vtkCLOSE before exiting PV-
WAVE).

Hardware Rendering 157

Saving the Contents of VTK Windows

In order to save the contents of VTK windows, you can use the procedure vtkPP-
MWRITE. This causesthe current contents of the selected or current VTK window
to be saved to afilein PPM (Portable PixMap) format. Thisisthe only format sup-
ported by VTK for saving the contents of VTK windows. The corresponding
function vtkPPMREAD can be used to read a PPM file and return a 24 bit image
that can be displayed in PV-WAVE. The routine vtkTVRD functions much as the
PV-WAVE TVRD routine but is awrapper to calls to vikPPMWRITE and
VtkPPMREAD.

NOTE The vtkPPMWRITE procedure will save exactly what you see on your
screen for aVTK window, including the contents of any windowsthat are partially
or fully obscuring the VTK window. You must make surethe VTK window isfully
visible for vikPPMWRITE or vtkTVRD to work properly. Thisisaresult of the
underlying VTK implementation and there is not away around this at present.

High-level Interface Routines

The following routines are PV-WAV E wrappers which mimic the functionality of
common PV-WAV E graphicsroutines. The source code for theseroutines are avail -
able as PV-WAVE procedures and act as good examples of using the low-level
VTK functionality.

VtKLIGHT Adds alight sourceto aVTK scene

vtkCAMERA Adds a customized camerato aVTK scene

VtKAXES Addsaset of 3axestoaVTK scene

vtkPLOTS Plots 3D lines and points

VIKTEXT Adds text annotation to aVTK scene

vtkPOLY SHADE Displays vertex/polygon lists which describe polygonal
objects

VvtkSURFACE Plots shaded and wireframe surfaces with axes

VtkSCATTER Plots pointsin 3D with axes

158

PV-WAVE User’s Guide

Specifying Color

In the PV-WAVE wrappersfor VTK there are a number of ways to specify colors.
The VTK windows always display in 24-bit color, although we can use the PV-
WAVE color table values as we will see. For parameters that expect asinput asin-
gle color vaue, the color can be specified in any one of the following ways (in this
case for the color red):

‘red’ See thefile <vni >/vtk-3_2/1lib/vtkcolornames.pro for a
complete list of supported color names, where <vni> isthe
path to the PV-WAVE installation.

‘FF0000' XL A long integer hexadecimal value specifying the 24-bit color.

[1.0, 0.0, 0.0] A three element vector of normalized floating point values
specifying the red, green, and blue components of the color.

[1.0,0.0,0.0, 1.0] A four element vector of normalized floating point values
specifying the red, green, blue, and a pha components of the
color. The alpha component is the transparency where 0.0 is
completely transparent and 1.0 is opague. Transparency isnot
supported for al color specifications and will be ignored
where not available.

2 If ashort byte or short integer value is passed, the RGB color
is obtained from the corresponding entry in the current PV-
WAVE color table. In this case when TEK COLOR has been
caled, color index 2 isred.

For parameters that expect asinput a 1D or 2D array of color values, such asthe
Shades keyword for vikSURFACE or Color keyword for vikPOLY SHADE, the

color can be specified as arrays of the above. For example for vtk SURFACE we
could pass a 2D array of short integers to make use of the PV-WAVE color table,
or a(3, m, n) array of float values between 0.0 and 1.0.

Low-level Interface Routines

For many users, the above high-level VTK wrapper routineswill provide sufficient
functionality for creating 3D charts similar to what is already available in PV-
WAVE, but now using accelerated OpenGL graphics. Others may want to make use
of the vast amount of functionality available in VTK including source code devel-
oped by other VTK users. All of thisis possible using the low-level interface
provided to VTK through PV-WAVE. If you intend to use the low-level functional-
ity available in VTK you will need to obtain documentation on VTK. See the
references in the INTRODUCTION (page 153) for more details.

Hardware Rendering 159

vtkCOMMAND

Most low-level VTK functionality is accessed using vikCOMMAND, which sim-
ply sends atext string containing any valid Tcl or VTK wrapper command to the

spawned Tcl process. You can send individual commands or even invoke pre-writ-
ten Tcl scripts through the “include” Tcl command.

Creation and accessto VTK objectsvia Tcl (and thus vikCOMMAND from PV-
WAVE) is made using this convention:

To create aVTK object in Tcl:

Vtk class name my vtk variable name

To call amethod of aVTK object in Tcl:

My vtk variable name method name param 1 param 2 param n

For example to create aVTK light source and set the color to red you could use
these commands from PV-WAVE:

vtkCOMMAND, ‘vtkLight my light’

vtkCOMMAND, ‘my light SetColor 1.0 0.0 0.0’

The use of the Tcl wrappersfor VTK commands are documented in the references
mentioned in the Introduction on page 153 and in reference pages available with
the VTK download. If you download the VTK distribution from http://public.kit-
ware.com, there are hundreds of example Tcl scriptsfor creating different kinds of
VTK visualizations. These scripts can be used in developing PV-WAV E wrappers
to create these same visualizations from PV-WAVE.

VTK Dataset Creation

VTK supports five (5) basic dataset representations. These represent the different
ways in which data can be organized for use in visualizations. Thisincludes repre-
sentations from simple pointsin 3D space, polygons, grids, and voxels (volume
elements). Thefollowing PV-WAV E wrappers offer away to create, store, and pass
these datasetsto VTK:

* vtkPOLYDATA

* VIKRECTILINEARGRID

* VtkSTRUCTUREDGRID

* VtkSTRUCTUREDPOINTS
* VtkUNSTRUCTUREDGRID

With al of the above dataset types, the most fundamental element isapoint. In
VTK there are attributes that can be associated with points and used in various
ways for visualizations, such as for coloring points or drawing vectors associated

160

PV-WAVE User’s Guide

with points. Creating these attributes is accomplished using the PV-WAVE proce-
durevtkADDATTRIBUTE. Attributes created with thisroutinecanbeusedincalls
to the above five dataset creation routines. Seethe referencesin the Introduction on
page 153 for more details.

Simple Examples

Here are some examples of using the PV-WAVE VTK Integration routines that
show how VTK can be accessed in a manner very similar to existing PV-WAVE
graphic routines.

Example 1: Create a Surface Plot
vVtkSURFACE, DIST(10), Shades=’slate blue’

This one command automatically invokes vtkINIT and vtk WINDOW to open a
window. Since only one color was specified (in this case using anamed color), the
entire surface is shaded using that color.

NOTE InVTK, X, Y and Z scaling are always identical, therefore you may need
to scale your raw datain order to change the scaling of one direction. For example
when using vtkSURFACE multiply your Z array by ascale factor so that the height
of the surface is appropriate.

Example 2: Display a Cube With a Different Color at Each Vertex

vertex list = [[0.0, 0.0, 0.0], $
[1L.0, 0.0, 0.0], $
[1.0, 1.0, 0.0], 8
[0.0, 1.0, 0.0], $
[0.0, 0.0, 1.0], $
[L.0, 0.0, 1.0], $
[1.0, 1.0, 1.0], $§
[0.0, 1.0, 1.011;

polygon_list = [4, 0, 1, 2, 3, $
4, 4, 5,6, 7, S
4, 0, 1, 5, 4, $
4, 2, 3, 7, 6, S
4, 0, 4, 7, 3, 8
4, 1, 2, 6, 5]

TEK_COLOR

vertex colors = [2,3,4,5,6,7,8,9]

vtkPOLYSHADE, vertex list, polygon list, Color=vertex colors

Hardware Rendering 161

This example shows how we can use a vertex/polygon list to create a plot in much
the sameway aswith POLY SHADE. Sincethe colorswe specify are short integers,
the colors used are from the current PV-WAV E col or table, which was|oaded using
TEK_COLOR in this case.

Example 3: Adding an Annotation to a Scene

vtkWINDOW, /Free, Background='000077'XL, /NoRender

vtkSURFACE, HANNING(20,20)*20.0, Shades=[1.0, 0.0, 0.0, 0.5]

vtkTEXT, 'Transparent Surface', Position=[10, 10, 20], $
/Follow, Color='green'

vVt kKRENDERWINDOW

NOTE that we use /NoRender to suppress rendering until we have added every-
thing to the scene (the surface and text annotation). Also note that we specify colors
in three different ways:

‘000077° XL A long integer specifying a dark blue color

[1.0,0.0,0.0,0.5] A fourelement array specifying the color red with
a 50% transparency

'green’ A string specifying a named color, as defined in
vtkcolornames.pro.

Example 4: Debugging VTK

vtkINIT, /Print

VtkWINDOW, /NoRender

vtkSCATTER, RANDOMN (seed, 3, 100), Color='blue’
vVt kKRENDERWINDOW

HAK, /Mesg

vtkWDELETE

vtkCLOSE

In this example we explicitly call vtkINIT so that we can turn on logging of all Tcl
commands. We also manage the window creation and deletion and rendering
ourselves.

More examples are provided with the PV-WAVE distribution.

For additional examples see the proceduresin the directory
<vnis/vtk-3_2/demo (where<vni> isthe path to your top level VNI
directory).

162

PV-WAVE User’s Guide

Software Rendering

You can render 3D geometric and volumetric data using the advanced rendering
capabilities of PV=WAVE. Most of these functions are part of the standard library.
The RENDER function is a system routine that performs rendering using the ray
tracing technique.

In addition, the standard library contains several utility functionsfor gridding (2D,
3D, 4D, and spherical) and for conversion of rectangular, polar, cylindrical, and
spherical coordinates.

For additional information on the rendering, gridding, and coordinate conversion
functions discussed in this chapter, see the PV-WAVE Reference.

In PV=WAVE, advanced rendering is performed using atechnique called ray trac-
ing. Ray tracing isthe process of following the path of light raysfrom alight source
into ascene. It is one of the most powerful techniques in the image synthesis gal-
lery. The PV=WAVE ray-tracer handles translucency and opacity, and providesthe
ability to display both geometric (polygonal) and volume data within one image.

For example, it allows you to display the fluid air flow over, around, or through an
object, such as an airplane wing together with a general description of the wing.

Using PV=WAV E’srenderer, you can al so generate pictures of voxel (volume) data
directly, without having to convert to a polygonal iso-surface representation first.

Using the other routines in the Advanced Rendering Library, you can now easily
mix the methods you employ for visualizing your data— for example, geometric
data with volumetric data. (Volumetric data are 3D entities that have information
inside them, instead of using polygons and linesto merely represent geometric sur-
faces and edges.)

These routines also provide:
v 3D vector field plots

v iso-surfacesfor polygonal representation. (An iso-surface is a pseudo-surface
of constant density within a volumetric data set.)

v/ avolume dlicer for interactive subsetting and display of volumetric data

AN

aview tool to graphically set the X, Y, Z position
v “rubber sheet” mapping of an image onto a sphere

Software Rendering 163

Demonstration Programs

There are three sources for advanced rendering demonstration programs:
* You can run the demonstration programs and look at the codein:
(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedirs>: [DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedirs> isthe main PV-WAVE directory.

* You can run the demonstration programs and look at the code in:
(UNIX) <wavedirs/demo/arl

(OpenVMS) <wavedirs: [DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedirs> isthe main PV-WAVE directory.

e You can run the PV=WAVE Demonstration Gallery and look at Gallery code
examples.

Demonstration Programs in the Examples Directory

You can find most of the Advanced Rendering Library demonstration programsin:
(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedirs: [DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> isthe main PV-WAVE directory.

UNIX USERS Before running these programson aUNIX system, be sureto read
the ARL section of the PV=WAVE Tips and Technical Notes for important
information.

To run these programs.
Q Changetothe examples directory and start PV=WAVE.

Q AttheWwAVE> prompt, enter the name of the program you want to run. For
example:

WAVE> vol demol

164

PV-WAVE User’s Guide

Q If you want to run another program, start a new session (exit and re-enter
PV=-WAVE) before typing in another program name. Exiting insures that all
variables are cleared, and that none of the data or displays from the previous
programs interfere with the new demonstration program.

Ray Tracing Demonstration (Render Directory)

For a quick demonstration of ray tracing applications, CD to the following
directory:

(UNIX) <wavedirs/demo/render

(OpenVMS) <wavedirs>: [DEMO.RENDER]

(Windows) <wavedirs\demo\render

Where <wavedir> isthe main PV=WAVE directory.

Then, enter the following commands:

WAVE> show_anim
; Quadric animation - Shows earth revolving for several revolutions.
; This demo takes approximately five minutes to complete.

WAVE> show_iso head
; Polygonal mesh with many polygons (iso-surfaces)

WAVE> show_slic_head
; Slicing a volume.

WAVE> show_flat_head
; Rendering an iso-surface with voxel values.

WAVE> show_tran head
; Diffuse and partially transparent iso-surfaces.

WAVE> show core head

; Rendering iso-surfaces with transformation matrices.
; Renders two volumes in the same scene.

The above routines display the resulting rendered images that have already been
created with gen__ routines and then stored in files. To get afeel for how long it
actually takesto create these rendered images on your workstation, enter the fol-
lowing commands. (On typical workstations, they each take from five to ten
minutes to generate, where the time taken is a function of the speed at which your
workstation does floating-point arithmetic.)

WAVE> gen amin
; Quadric animation.

Demonstration Programs 165

WAVE> gen_iso_head
; Polygonal mesh with many polygons.

WAVE> gen slic head
; Slicing a volume.

WAVE> gen flat head
; Rendering an iso-surface with voxel values.

WAVE> gen_ tran head
; Diffuse and partially transparent iso-surfaces.

WAVE> gen_core_head

; Rendering iso-surfaces with transformation matrices.
; Renders two volumes in the same scene.

SLICE_VOL Function and VIEWER Procedure
Demonstrations

These two routines can be used to manipulate and view portions of volumes.

The SLICE_VOL function returns atwo-dimensional array containing aslicefrom
a 3D volumetric array. You can demonstrate the SLICE_VOL function using the
Medical Imaging and CFD/Aerospace buttons of the PV=WAV E Demonstration
Gallery.

The VIEWER procedure lets you interactively define a 3D view, adlicing plane,
and multiple cut-away volumes. You can demonstrate the VIEWER procedure
using the 4-D Data, Medical Imaging, Oil/Gas Exploration, and CFD/Aerospace but-
tons of the PV=WAVE Demonstration Gallery.

Tables of Demonstration Programs

Thefollowing tables summarize the demonstration programs and list the rendering
routines that are used in these programs.

The demonstration programs listed in the tables are located in the render and
arl directoriesin:

(UNIX) <wavedir>/demo

(OpenVMS) <wavedirs>: [DEMO]

(Windows) <wavedirs>\demo

Where <wavedir> isthe main PV=WAVE directory.

166

PV-WAVE User’s Guide

Polygon Rendering

Demonstration Programs Routines Used

poly_demol SET_VIEW3D
POLY_SURF

Displays a perspective view of asurface fromaview- POLY_NORM

point within the data. POLY_TRANS
POLY_DEV
POLY_C_CONV
POLY_PLOT

grid_demo4 GRID_4D
VOL_PAD

Shows 4D gridding and a cut-away view of ablock of CENTER_VIEW

volume data. SHADE_VOLUME
POLY SHADE

f_gridemo4 FAST_GRID4
VOL_PAD

Shows 4D gridding and a cut-away view of ablock of CENTER_VIEW

volume data. SHADE_VOLUME
POLY SHADE

cubel

Constructs a polygonal mesh of diffusely shaded poly-
gons. This program is not on the tape.

cube?

Constructs a polygonal mesh of flat-shaded poly-
gons.This program is not on the tape.

gen_iso_head
show _iso_head

Creates a human head using a polygonal mesh with
52,500 polygons.

sphere_demol

Displays an image warped onto a sphere.

MESH, RENDER

MESH, RENDER

SHADE_VOLUME
MESH, RENDER

POLY_SPHERE
CENTER_VIEW
POLY SHADE

Demonstration Programs 167

Polygon Rendering (Continued)

Demonstration Programs Routines Used

sphere_demo2 POLY_SPHERE
CENTER_VIEW

Displays data warped onto an irregular sphere. POLY SHADE
POLY_COUNT
POLY_NORM
POLY_TRANS
POLY_DEV
POLY_C_CONV
POLY_PLOT

sphere_demo3 GRID_SPHERE
POLY_SPHERE

Displays multiple spheres merged together. POLY_COUNT
POLY_TRANS
POLY_MERGE
CENTER_VIEW
POLY SHADE
POLY_NORM
POLY_DEV
POLY_PLOT

grid_demo5 GRID_SPHERE
POLY_ SPHERE

Shows spherical gridding. CENTER_VIEW
POLY SHADE

gen_anim SPHERE
show_anim RENDER

Constructsa“movie” of an orbit around a sphere. This
program takes several minutesto run.

Volume Rendering

Demonstration Programs Routines Used

vec_demol VECTOR_FIELD3

Displays a 3D vector field from X-Y-Z data.

vec_demo2 CONV_TO_RECT
VECTOR_FIELD3

Displays a3D vector field from the volumetric datawith

specified starting points for the vectors.

168 PV-WAVE User’s Guide

Volume Rendering (Continued)

Demonstration Programs Routines Used

vol_demol CONV_TO_RECT
VECTOR_FIELD3

Displays a 3D fluid flow vector field with random start-

ing points for the vectors.

gen_dglic_head VOLUME
RENDER
show_dlic_head

Demonstrates the rendering of selected slices through
some volume data.

gen flat_head VOLUME
RENDER

show_flat_head

Renders a diffuse iso-surface with voxel values.

gen_tran_head VOLUME
RENDER

show_tran_head

Renders both a diffuse iso-surface together with a par-
tially transparent iso-surface.

gen_core_head VOLUME
RENDER
show_core_head

Renders a diffuse iso-surface using actual voxel values
Demonstrates the rendering of two volumesinto asingle
image.

Polygon and Volume Rendering

Demonstration Programs Routines Used
vol_demo2 VOL_PAD
CENTER_VIEW

Displays an MRI scan of a human head using three VOL_MARKER

different display techniques. This demonstration takesa SHADE_VOLUME

whileto run. POLY SHADE
VOL_TRANS
VOL_REND

Demonstration Programs 169

Polygon and Volume Rendering (Continued)

Demonstration Programs Routines Used

vol_demo3 CENTER_VIEW
SHADE_VOLUME

Displays 3D fluid data using two display techniques. POLY SHADE
VOL_PAD
VOL_TRANS
VOL_REND

vol_demo4 GRID_4D
VOL_PAD

Similar to grid_demo3, but also rendersthedatausing CENTER_VIEW

POLY_PLOT and VOL_REND. SHADE_VOLUME
POLY SHADE
POLY_NORM
POLY_TRANS
POLY_DEV
POLY_COUNT
POLY_PLOT
VOL_TRANS
VOL_REND

Gridding

Demonstration Program Routines Used

f_gridemo2 FAST_GRID2

Shows 2D gridding with dense data input.

f_gridemo3 FAST_GRID3

Shows 3D gridding with dense data input.

f_gridemo4 FAST_GRID4

Shows 4D gridding with dense data input.

grid_demo2 GRID_2D

Shows 2D gridding with sparse data input.

grid_demo3 GRID_3D

Shows 3D gridding with sparse data input.

grid_demo4 GRID_4D

Shows 4D gridding with sparse data input.

170

PV-WAVE User’s Guide

Gridding (Continued)

Demonstration Program Routines Used

grid_demo5 GRID_SPHERE

Shows spherical gridding.

NOTE The Advanced Rendering Library also contains the demonstration pro-
gram, img_demol. Thisprogram displaysapseudo true-color Landsat image on
an 8-bit color system. On some systems, you may need to click in the Wave O win-
dow to see the proper colors.

The Basic Rendering Process

The five basic steps to rendering are:

Q

Q

Import or generate data to be rendered. See the section Importing and Gener-
ating Data for Rendering on page 172 for details.

Manipulate and convert data. This step is optional, depending on the type of
datayou are using. PV=WAV E provides several functions and procedures for
transforming data to be rendered. See the section, Manipulating and Convert-
ing Data on page 176 for details.

Set up your datafor viewing. See the section Setting Up Data for Viewing on
page 179 for details.

Use one of the rendering routines to render the image. The rendering routines
are:

POLY_PLOT
POLY SHADE
VECTOR_FIELD3
VOL_MARKER
VOL_REND
RENDER

See the sections Rendering with Standard Techniques on page 179 and
Ray-tracing on page 180.

Display data. See the section Displaying Rendered Images on page 200.

The Basic Rendering Process 171

Importing and Generating Data for Rendering

Before you can render data, you must import and/or generate data. There are
several ways to render imported or generated data. The demonstration programs
illustrate five ways:

Import the data, manipulate the data, set up the data for viewing, and then
render the imported data. Demonstration programs that illustrate this method
are:

vec_demo2
vol demol

Import the data, generate polygons or volumes, manipul ate the data, set up the
data for viewing, and then render the data. Examples are:

poly demol
vol demo2
vol demo3

Import the data, generate polygons or volumes, set up the datafor viewing, and
then render the data. Examples are:

sphere_ demol

gen iso head

gen_amin

gen slic head
gen flat head
gen_ tran head
gen_core_head

The gen_ routinesimport data, generate polygons or volumes, use the
RENDER function to render images and then store the rendered imagesin a
file.

Generate polygons, manipul ate the data, set up the datafor viewing, and then
render the data. Examples are:

sphere demo?2
sphere demo3

f gridemo4

172

PV-WAVE User’s Guide

grid demo4

» Generate polygons, set up the data for viewing, and then render the data.
Examples are:

grid demo5
vec_demol
cubel

cube?2

Importing Data

You can render datathat isimported from one or morefiles. Refer to for detailson
importing datainto PV=WAV E. Example programs that import data from more
than onefilearepoly demol, vec demo2, and vol demol.

Generating Polygons and Volumes

PV=WAVE provides routines for creating various types of polygons and volumes
such as meshes, rectangular surfaces, spherical surfaces, cones, and cylinders.

Some of these routines are only used with the RENDER function (CONE,
CYLINDER, MESH, SPHERE and VOLUME). For information on these
RENDER-specific functions, see the section Specifying RENDER Objects on page
181, aswell asthe individual function descriptionsin PV-WAVE Reference.

Many of the render routines and their utilities require a vertex_list and a
polygon_list as input parameters. Routines that generate a vertex_list and a
polygon_list representation for polygons and volumes are described in this section.
These routines include POLY _SPHERE, POLY _SURF, and SHADE_VOLUME.

Vertex Lists and Polygon Lists

PV=WAVE uses avery simple format for polygonal representation. It consists of
an array of vertices and aflat one-dimensional array of polygons, as described
below.

o vertex_list— A (3, n) array containing the three-dimensional coordinates of
each vertex.

e polygon_list— An array containing the number of sidesfor each polygon and
the subscripts into the vertex_list array.

Here's an example of how to render two adjacent square polygons with a
vertex_list:

Importing and Generating Data for Rendering 173

X-axis Y-axis Z-axis
0.0 0.0 0.0
1.0 0.0 0.0
20 0.0 0.0
20 10 0.0
10 1.0 0.0
0.0 1.0 0.0

Asshown in Figure 7-1, there are only six vertices in the resulting vertex_list

because two vertices are shared by both polygons.

0.0,1.0,0.0 1.0,1.0,0.0

2.0,1.0,0.0

0.0,0.0,0.0 1.0,0.0,0.0

2.0,0.0,0.0

Figure 7-1 Vertices of two square polygons. Six vertices define both polygons.

The polygon_list then contains:

4

w N~ 01~ O

Thefirst polygon has 4 sides.

Thefirst vertex is vertex_list(*, 0).
The second vertex is vertex_list(*, 1).
The third vertex is vertex_list(*, 4).

The fourth vertex is vertex_list(*, 5).

The second polygon has 4 sides.

Thefirst vertex is vertex_list(*, 1).
The second vertex is vertex_list(*, 2).

Thethird vertex is vertex_list(*, 3).

174

PV-WAVE User’s Guide

4 Thefourth vertex is vertex_list(*, 4).

The rendering procedures POLY SHADE and POLY _PLOT both use avertex_list
and polygon_list asinput parameters. Other routines that use either avertex_list or
apolygon_list include:

« POLY_C_CONV
« POLY_COUNT
« POLY_DEV

« POLY_NORM

« POLY_MERGE
« POLY_TRANS

The RENDER function also requiresavertex_list and apolygon_listif itisusedto
render polygonal mesheswith the MESH function. Polygonal meshesrepresenting
objectsthat have been derived outside of PV=WAV E can beimported, converted to
the representation used by MESH, and then rendered with the RENDER function.

Examples of the RENDER function that use vertex_list and polygon_list to create
polygonal meshes include Example 1: Polygonal Mesh (Diffusely-shaded Poly-
gons) on page 187, Example 2: Polygonal Mesh (Flat-shaded Polygons) on page
187, and Example 3: Polygonal Mesh (Many Polygons) on page 188.

Rectangular Surfaces

You can generate avertex_list and a polygon_list for rectangular surfaceswith the
POLY _SURF procedure. This procedure generates athree-dimensional vertex_list
and apolygon_list from atwo-dimensional array that contains Z values. The exam-
ple program poly demol uses this procedure.

Spherical Surfaces

You can use the POLY _SPHERE procedure to generate a vertex_list and a
polygon_list for a sphere. Demonstration programs that use this procedure are:

e grid demo5
e sphere demol
e sphere demo2

e sphere demo3

Importing and Generating Data for Rendering 175

Three-Dimensional Volumes

The SHADE_VOLUME procedure generates a vertex_list and polygon_list
describing the contour iso-surface of a given three-dimensional volume. Example
programs that use SHADE_VOLUME include:

e f gridemo4

¢ grid demo4

e vol demo2

e vol demo3

e vol demo4

e gen iso_head

For acomplete description of the SHADE_VOLUME procedure and the other pro-
cedures mentioned in this section, see the PV-WAVE Reference.

Manipulating and Converting Data

PV=WAV E providesroutinesfor manipulating and converting data, as summarized
in this section. This step is optional depending on the type of data you are using.
For details about each routine, see its description in PV-WAVE Reference.

2-, 3-, and 4-dimensional Gridding

Gridding is amethod that generates a uniform grid from irregularly spaced data;
the method interpolates or extrapolates new data from agiven set of data, and then
creates auniform grid that maps this data. PV=WAV E supports 2D, 3D, and 4D
gridding.

2D Gridding

The functions FAST_GRID2 and GRID_2D return a gridded one-dimensional
array containing Y valuesfor input datawith X, Y coordinates. The FAST_GRID2
function works best with dense data points (more than athousand pointsto be grid-
ded). The GRID_2D function works best with sparse data points (less than a
thousand points to be gridded).

3D Gridding

The functions FAST_GRID3 and GRID_3D return a gridded two-dimensional
array containing Z values for input datawith X, Y, and Z coordinates. The

176

PV-WAVE User’s Guide

FAST_GRID3 function works best with dense datapoints. The GRID_3D function
works best with sparse data points.

4D Gridding

The functions FAST_GRID4 and GRID_4D return a gridded three-dimensional
array containing intensity valuesfor input datawith four-dimensional coordinates.
The FAST_GRID4 function works best with dense data points. The GRID_4D
function works best with sparse data points.

Spherical Gridding

The GRID_SPHERE function returnsagridded, two-dimensional array containing
radii, given random longitude, |atitude, and radius val ues.

Polygon Manipulation

The polygon manipulation routines generate i nformation to be used by the polygon
rendering routines. These routines are discussed in detail in the PV-WAVE
Reference.

e POLY_C_CONV — Thisfunction returns alist of colors for each polygon.
The function requires a polygon_list and alist of colors for each vertex. The
POLY _PLOT procedure uses data generated by this function.

* POLY_COUNT — Thisfunction returns the total number of polygons con-
tained in apolygon_list. The total number of polygonsis required as an input
by the POLY_PLOT procedure.

* POLY_MERGE — This procedure merges two vertex lists and two polygon
lists.

e POLY_TRANS— Thisfunction returnsalist of 3D points transformed by a
4-by-4 transformation matrix.

Volume Manipulation

The two volume manipulation routines, VOL_PAD and VOL_TRANS preparevol-
umes for rendering.

 VOL_PAD — Thisfunction returns a three-dimensional volume of data pad-
ded on all six sides with zeroes. For example, if you are transforming a small
volume inside a large volume using the VOL_TRANS function, then you
should use the VOL _PAD function to pad the small volume with zeros. If you
do not pad the small volume with zeros, the data points at the edge of the small
volume will be duplicated to fill the space between the outer surfaces of the

Manipulating and Converting Data 177

small volume and the inner surfaces of the large volume. See Figure 7-2. This
function is often used to process volumes before using the VOL_TRANS and
SLICE_VOL function.

Figure 7-2 The VOL_PAD function pads the space between two volumes with zeros. With-
out VOL_PAD, data values from the outer edges of the small volume fill the empty space
between the two volumes.

VOL_TRANS— Thisfunction returns a three-dimensional volume of data
transformed by a 4-by-4 matrix.

SLICE_VOL — Thisfunction returns a two-dimensional array containing a
dlice from athree-dimensional volumetric array.

Coordinate Conversion

PV=WAVE provides several routines for converting data to various coordinate
systems. Some of the rendering functions require that data be mapped to a
particular coordinate system. The POLY _PLOT procedure requires a vertex_list
with device coordinates. The POLY SHADE procedure must bein either data or
normalized coordinates.

CONV_TO_RECT — Thisfunction converts polar, cylindrical, or spherical
coordinates to rectangular coordinates.

CONV_FROM_RECT — Thisfunction converts rectangular coordinates to
polar, cylindrical, or spherical coordinates.

POLY_NORM — Thisfunction returns alist of three-dimensional points
converted from data coordinates to normal coordinates. This function is often
used in conjunction with the POLY _TRANS and POLY _DEYV functionsto
transform a vertex_list that is used by some of the render functions.

POLY_TRANS— Thisfunction returns alist of three-dimensional points
transformed by a 4-by-4 transformation matrix. Like the POLY_NORM
function, this function is used to transform a vertex_list.

178

PV-WAVE User’s Guide

POLY_DEV — Thisfunction returns alist of three-dimensional points
converted from normal coordinates to device coordinates. This function is
often used in conjunction with the POLY _TRANS and POLY _NORM
functions to transform a vertex_list.

Setting Up Data for Viewing

In some instances, you may need to set up your datafor viewing before rendering.
Several routines that set up viewing are:

CENTER_VIEW — This procedure sets system viewing parameters to
display datain the center of the current window.

SET_VIEW3D — This procedure generates a three-dimensional view
given aview position and a view direction.

VIEWER — This procedure |lets you interactively define athree-dimensional
view, adlicing plane, and multiple cut-away volumes.

T3D — Thisisa Standard PV=WAVE library procedure. Refer to This
procedure is used by sphere demo3, vec demol, vec_demo2, and
vol demol. These demonstration programs are located in:

(UNIX) <wavedirs/demo/arl

(OpenVMS) <wavedirs>: [DEMO.ARL]

(Windows) <wavedir>\demo\arl

This procedureis also used by all of thegen demonstration programsin:
(UNIX) <wavedirs/demo/render

(OpenVMS) <wavedirs: [DEMO.RENDER]

(Windows) <wavedirs\demo\render

Where <wavedir> isthe main PV=WAVE directory.

Rendering with Standard Techniques

Onceyou haveimported, generated, and set up your datafor viewing, you are ready
to render it. PV=WAVE provides routines to render both polygons and volumes.
This section briefly describes these rendering routines, which are part of the stan-
dard library. For additional information on these routines, see the PV-WAVE
Reference.

Setting Up Data for Viewing 179

Polygon Rendering

The two polygon rendering routines are POLY _PLOT and POLY SHADE:

* POLY_PLOT —Thisprocedurerequiresavertex_list, apolygon_list, and the
total number of polygonsto plot. The procedure does not render polygonswith
light-source shading, but it can plot opaque and transparent polygons.

* POLYSHADE — Thisfunction constructs a shaded surface representation of
one or more solids described by a set of polygons. This function also requires
avertex_list and a polygon list.

Volume Rendering

A volume of data consists of intensity values represented at data points located by
three-dimensional coordinates. There are three routines for rendering volumes.

* VECTOR_FIELD3— This procedure plots a three-dimensional vector field
from three 3D arrays.

* VOL_MARKER — This procedure displays colored markers scattered
throughout a volume.

 VOL_REND — Thisfunction renders volumetric data translucently.

Ray-tracing

The RENDER function lets you generate multiple images for a scene from five
object types using aray-tracing technique. For example, you can generate pictures
of voxel data directly, without having to convert to a polygonal iso-surface repre-
sentation. (Voxels are the 3D counterpart of a 2D pixel).

You can also simultaneously render volumes, polygonal meshes, and three kinds of
guadric objects. cones, cylinders, and spheres.

» Volumes are applicableto any voxel processing domain, such asthe visualiza-
tion of astronomical, geological, and medical data.

» Polygonal meshes can be used for iso-surfaces, as well as spatial-structural
data.

» Cones can be used for caps on axes.

* Cylinders can be used for molecular modeling (symbolizing bonds) aswell as
axes and 3D line generation.

180

PV-WAVE User’s Guide

» Spheresareapplicableto spherical inverse (“rubber sheet”) mapping aswell as
molecular modeling (atoms).

This section describes the lighting and color models used by the Renderer. It also
explains how you specify objects to be rendered, including setting material prop-
erties and view transformations.

Specifying RENDER Objects

The five object types (primitives) supported by RENDER correspond to five func-
tions that define these objects. They are summarized below and detailed in the PV-
WAVE Reference.

* CONE — A conic primitive that is defined by default to be centered at the ori-
gin with aheight of 1.0, and to have an upper radius of 0.5 and alower radius
of 0. The lower radius can be changed using the Radius keyword, while the
upper radius can be changed using the Scale keyword with the T3D procedure.

The Radius keyword corresponds to a scaling factor in the range [0...1] which
ismultiplied by the upper radius to give the lower radius. For example,
Radius=0.5 correspondsto aconic object whose lower radiusis one-half of the
upper radius, while Radius=0.0 correspondsto a point whose lower radiusis 0
(aconic that ends in apoint).

e CYLINDER — Thisisthe similar to a CONE, except that the lower radiusis
the same as the upper radius (a CONE with Radius=1.0).

e MESH — A polygonal mesh primitive that uses astandard list of vertices and
polygons that are described in Vertex Lists and Polygon Lists on page 173.

Note that any non-coplanar polygons in a mesh will automatically be reduced
to triangles by RENDER.

» SPHERE — Ané€llipsoid primitive centered at the origin with aradius of 0.5.

* VOLUME — Volume datathat uses athree-dimensional byte array. Each byte
in the voxel array correspondsto an index into the material properties associ-
ated with the volume.

Lighting Model

The RENDER function uses a more complicated lighting model than that used by
the other routines. Under this new paradigm, theintensity value at a pixel is gener-
ated using arecursive shading function that is designed to imitate natural light.

Ray-tracing 181

Light rays are emitted from lights, bounce, and are then absorbed and possibly re-
emitted with respect to objectsin the scene; sometimes they reach (are visible to)
the viewer (in this case, an image). This technique of rendering iscalled “ray
tracing.”

The componentsthat comprisethe color at aparticular point on an object in ascene
are afunction of the material properties of the object at that point and the orienta
tion of the object with respect to other objects, light sources, and the viewer.

The Renderer supports Lambertian diffusion, transparency, and ambient material
properties for color, as detailed below.

Defining Color and Shading
The color at point P on an object is defined simply a
Color (D+T+A)

where D represents the diffuse component, T represents the transmission compo-
nent, and A represents the ambient component. These three shading components
are defined bel ow.

(PV=-WAVE allows only a scalar value in the specification of color viathe Color
keyword. Thus, the term “intensity” is technically more accurate. However, the
term “color” was chosen to alow for future enhancements.)

Diffuse Component

The diffuse component corresponds to a simple approximation of Lambertian
shading where the resulting intensity at some point on an object isafunction of the
light incident at that point, the position of the associated light source(s), and the
surface normal at that point.

The diffuse component is defined as

nvl

= Kdiff 3 1;j(Np o Lgy)
i=0

where
Kdiff is the diffuse reflectance coefficient.
I; istheintensity of light sourcei.

Np isthe unit surface normal at point P.

182

PV-WAVE User’s Guide

Lp; isthe unit vector from point P to the location of the point light source
Li.
« isthe vector dot product.

By default, nvl isthe total number of lights. If the Shadows keyword is specified in
the call to RENDER, then nvl is the number of visible light sources (possibly via
transmission through objects) at point P.

Transmission Component

The transmission component is simply the light which has passed through the
object at a particular point. For example, the color of apoint on aglassball isa
combination of both the light striking the surface and the light which passes
through it from the opposite side of the point. RENDER currently assumesthat the
refractive indices of all objects are the same.

The transmission component is defined as:
T = (Ktran-T;)(Npe Ty)

where
Ktran is the specular transmission coefficient.

T,istheintensity of the light that is transmitted from other objects, assum-
ing that all objects have arefractive index of 1 (air).

Np is the unit surface normal at point P.

Ty isthe calculated specular transmission microfacet normal from the
direction of transmission.

« isthe vector dot product.

Ambient Component

The ambient component of the resulting shaded color is compl etely independent of
the position of objects and light sources. It istypically used aone (i.e., Kdiff and
Ktran are 0) for flat shading and for rendering voxel values as intensities that cor-
respond directly to their actual byte values.

The ambient component is defined as:

Ray-tracing 183

nl
A = Kamb)' Iy
i=0

where

Kamb is the ambient coefficient.
nl isthe total number of light sources.
I,; isthe intensity of light sourceii.

Defining Object Material Properties

The following keywords can be used with each RENDER object:
e Color — The color (intensity) coefficient of the object.

e Kamb — The ambient coefficient (flat shaded).

» Kdiff — The diffuse reflectance coefficient.

e Ktran — The specular transmission coefficient.

Objects may have up to 256 material properties each; thus, an array of 256 double-
precision floating-point values can be assigned to each keyword.

The defaults for these properties vary from object to object:

e For CONE, CYLINDER, SPHERE, and MESH, Color and Kdiff are all 1,
while Kamb and Ktran areal 0. (This correspondsto Color (0:255)=1.0
and Ktran(0:255)=0.0 in PV=WAVE notation.)

* For VOLUME, Color areall 1, Kdiff and Ktran are all 0, and Kambisan array
of 256 linearly increasing values from 0 to 1.

CONE, CYLINDER, and SPHERE also support a Decal keyword that all ows map-
ping of a byte image onto the surface of the object. The values in the image
correspond to an index into the arrays of material properties defined above; thus,
different regions on an object can have different properties.

For polygonal meshes, in addition to specifying alist of polygons, you can also
specify a 1D array of bytes, one element for each polygon. Thisarray is an index
into the arrays of material properties defined above. Thisallowsyou to then usethe
Materials keyword to specify different properties for different polygons.

Theactual valueinthevoxel array of bytesdefiningaVOLUME isused asanindex
into the arrays of material properties defined with the Materials keyword; thus, a
voxel data set can be considered to be made up of as many as 256 voxel types.

184

PV-WAVE User’s Guide

TIP For best results, be sure that each Col or (Kamb+Kdiff+Ktran) setting isin the
range [0...1]. Otherwise, you must use the Scale keyword in the call to RENDER.

Decals

A decal isa 2D array (image) of bytes whose elements correspond to indices into
the arrays of material properties. You can use the Decal keyword with the quadric
objects.

For example, if agiven point on an object is mapped to coordinates (u, v) inthe
decal image, then the material properties used at that point for shading would be
Color (Decal (u,v)), Kamb (Decal (u,v)),Kdiff (Decal (u,v))
andKtran (Decal (u,v)).Anexampleof applying adecal to asphereisshown
in Example 4. Quadric Animation on page 190.

Setting Object and View Transformations

The view that is automatically generated by RENDER is depicted in Figure 7-3.
(You can retrieve this view with the Info keyword; for details, see the PV-WAVE

Reference.)
light
The default is
the same point.
AN eye
top left
[TT 7T T 77777777
[T77 7777777777
[T 777777777777

[T7T777 7777777777 Vi |
[T/ 7777 wpare

(1777777777777 (rendered image)
[/77] 7 7] 77 7] 777

bottom left LI pottom right

S T~

scene

Figure 7-3 The default view used in RENDER positions the observer’s eye on the positive
z-axis, looking towards the origin into the scene with a slight perspective. All objects are vis-
ible in this default view.

Ray-tracing 185

You can use the View keyword with RENDER to specify a different view. Thisis
especially useful for zooming in or for animations, since changesin scale can result
if you use the default view in animations.

You can also use the Transform keyword with any object passed into RENDER.
Thiskeyword allowsindividual objectsto betransformed (e.g., rotated, scaled, and
positioned) separately from other objectsin the scene. Transform containsthelocal
transformation matrix whose default is the identity matrix:

1000
0100
0010
0001

Typically, you would build the transformation matrix by first using the T3D proce-
dure and then using the system variable transformation matrix !P.T. Examples of
using this method of matrix construction are shown throughout the RENDER
Examples on page 187.

For more information, see the section Geometric Transfor mations on page 146.

Invoking RENDER

RENDER isthe function that generates the image from the objects you have spec-
ified. The general format is:

result = RENDER(object,, ..., object,,)

where object; is any number of objects previously-defined with the RENDER
object functions.

RENDER returns a byte image of size X-by-Y, where X and 'Y each default to 256
unless overridden by the keywords X and Y. The returned image can then be dis-
played using either the TV or TVSCL procedure.

Asillustrated in Figure 7-3 on page 185, RENDER automatically generates a
default view. However, you may choose to use the View or Transform keywords to
alter this default view.

Unless otherwise specified, a single-point light source is defined to coincide with
the observer’s viewpoint. The Lights keyword can be used to passin an array of
locations and intensities of point light sources.

For details on using the other RENDER keywords— Sample, Scale, Shadow, X, Y,
and Info — see the description of this function in the PV-WAVE Reference.

186

PV-WAVE User’s Guide

RENDER Examples

The following examples were designed to show the capabilities of RENDER,
rather than to depict typical applications. You can find most of the examplesin this
sectionin:

(UNIX) <wavedirs/demo/render

(OpenVMS) <wavedirs>: [DEMO.RENDER]

(Windows) <wavedirs>\demo\render

The data and image files used arein:

(UNIX) <wavedir>/data

(OpenVMS) <wavedirs>: [DATA]

(Windows) <wavedirs>\data

Where <wavedirs> isthe main PV=WAVE directory.

Example 1: Polygonal Mesh (Diffusely-shaded Polygons)

This example constructs a polygona mesh (iso-surface) of diffusely-shaded poly-
gons. The default light source is at the eye-point.

Program Listing

PRO cubel

verts = [[-1.0,-1.0,1.0], [-1.0,1.0,1.0]1, S
(,.0,1.0,1.0],[1.0,-1.0,1.0], [-1.0,-1.0,-1.01, s
[-1.0,1.0,-1.0],% [1.0,1.0,-1.0], [1.0,-1.0,-1.0]]

polys=[4,0,1,2,3, 4,4,5,1,0, 4,2,1,5,6, 4,2,6,7,3, S
4,0,3,7,4, 4,7,6,5,4]

m = MESH (verts, polys)

T3D, /Reset, Rotate = [15.0, 30.0, 45.0]
i = RENDER(m, x = 512, y = 512, Transform = !P.T)
TV, i

END

Example 2: Polygonal Mesh (Flat-shaded Polygons)

This example constructs a polygonal mesh of flat-shaded polygons. Each polygon
face has a different intensity, independent of the light source or the eye-point
(which are the same here.)

Program Listing

PRO cube2

Ray-tracing 187

verts = [[-1.0,-1.0,1.0], [-1.0,1.0,1.0], [1.0,1.0,1.01,S3

(L.o0,-1.0,12.01, f[-1.0,-1.0,-1.0], [-1.0,1.0,-1.0],$
(L.0,1.0,-1.0], [1.0,-1.0,-1.01]
polys = [4,0,1,2,3, 4,4,5,1,0, 4,2,1,5,6, 4,2,6,7,3, §

4,0,3,7,4, 4,7,6,5,4]
amb = FLTARR(256)
amb(0:5) = [.5, .3, .7, .9, .4, .1]

m = MESH(verts, polys, Materials = [0,1,2,3,4,5], $
Kdiff = FLTARR(256), Kamb = amb)

T3D, /Reset, Rotate = [15.0,30.0,45.0]
i = RENDER(m, x = 512, y = 512, Transform = !P.T)
TV, 1

END

Example 3: Polygonal Mesh (Many Polygons)

This example is arealistic application of polygonal meshes. It generates 52,500
polygons (approximately 98,000 triangles) as an iso-surface using the
SHADE_VOLUME procedure. The polygons are then rendered.

The resulting image, shown in Figure 7-4, is saved to afile and is displayed using
show_iso _head.pro.

Note, however, that it isnot necessary to convert to apolygonal representation prior
to rendering volumes; thisis shown in Examples 5 through 8.

188 PV-WAVE User’s Guide

Figure 7-4 An example of polygonal meshes showing 52,000 polygons generated as an iso-
surface and ray traced using the RENDER function.

Program Listing

PRO gen_iso_head
volx = 115 & voly = 75 & volz = 105
; Volume data dimensions
band = 5
; The neighborhood size of the average filter.

dat = BYTARR(volx, voly, volz)
OPENR, 1, !Data Dir + ’‘man_head.dat’
READU, 1, dat

CLOSE, 1

head = BYTARR (volx + 2 * band, voly + 2 * band, volz + 2 * band)

head (band:band + volx - 1, band:band + voly - 1, $
band:band + volz - 1) = dat

head = SMOOTH (head, band)
; Apply band » 3 average filter.

SHADE VOLUME, head, 18, vertex list, polygon list, /Low
m = MESH(vertex list, polygon list)
; Generate iso-surface.

T3D, /Reset, Rotate = [60.0,0.0,-60.0]
im = RENDER(m, x = 512, y = 512, Transform = !P.T)
TVSCL, im

OPENW, 1, ’‘iso_head.img’
WRITEU, 1, im
CLOSE, 1

END

Program Listing

PRO show_iso head
im = BYTARR(512, 512)
OPENR, 1, !Data Dir + ’‘iso_head.img’
READU, 1, im
CLOSE, 1
TVSCL, im

Ray-tracing 189

END

Example 4: Quadric Animation

This example " constructs’ amovie of an orbit around a sphere which has ocean
temperature mapped on as a decal and a color lookup table applied from
PV=WAVE after generation of the movie.

If you wanted to add the boundaries of countries, you could do so by drawing them
directly into the decal prior to calling SPHERE.

Note that the movie is saved to afile and is displayed using show _anim.pro.

Program Listing

PRO gen anim

decal = BYTARR (720, 360)

OPENR, 1, !Data Dir + ’‘world map.dat’
READU, 1, decal

CLOSE, 1

; Load the decal to apply.

dif

amb

FLTARR (256)
FINDGEN (256) /255.
; Set shading to correspond directly to image values.

T3D, /Reset, Rotate = [-90.0, 90.0, 0.0]
c = SPHERE (Decal = decal, Kamb = amb, Kdiff = dif, $
Transform = !P.T)

mve = BYTARR(256, 256, 72)
FOR i = 0, 71 DO BEGIN

T3D, /Reset, Rotate = [-20.0, 1*5.0, 0.0]

mve (*, *, i) = RENDER(c, x = 256, y = 256, Transform = !P.T)
; Create an animation by orbiting view around the sphere.
ENDFOR

OPENW, 1, !Data Dir + ’‘world anim.img’
WRITEU, 1, mve
CLOSE, 1

END

Program Listing

FUNC show_anim

190

PV-WAVE User’s Guide

Window, 0, XSize = 256, YSize = 256, Colors = 128,$
XPos = 300,YPos = 50

red = FLTARR(256)

grn = FLTARR(256)

blul = FLTARR(256)

blu2 = FLTARR(256)

FOR i=0, 100 DO BEGIN
fi = FLOAT (i)

(

red(i) = (-((ABS(fi - 100.0)%2.00)))
grn(i) = (-((ABS(fi - 50.0)71.50)))
blul(i) = (-((ABS(fi - 25.0)71.00)))
blu2(i) = (-((ABS(fi - 100.0)70.50)))

; Create a color lookup table.

ENDFOR

red = BYTSCL(red)

grn = BYTSCL (grn)

blu = BYTSCL(blul) > BYTSCL(blu2)

TVLCT, red, grn, blu, 0

white = 127 & TVLCT, 255, 255, 255, white
light yellow = 126 & TVLCT, 255, 255, 127, light yellow
light purple = 125 & TVLCT, 255, 127, 255, light purple
light cyan = 124 & TVLCT, 127, 255, 255, light cyan
yellow = 123 & TVLCT, 255, 255, 000, yellow
purple = 122 & TVLCT, 255, 000, 255, purple
cyan = 121 & TVLCT, 000, 255, 255, cyan
light red = 120 & TVLCT, 255, 127, 127, light red
light green = 119 & TVLCT, 127, 255, 127, light green
light blue = 118 & TVLCT, 127, 127, 255, light blue

greenish red = 117 & TVLCT, 255, 127, 000, greenish red
redish green = 116 & TVLCT, 127, 255, 000, redish green
redish blue = 115 & TVLCT, 127, 000, 255, redish blue
bluish red = 114 & TVLCT, 255, 000, 127, bluish red
bluish green = 113 & TVLCT, 000, 255, 127, bluish green
greenish blue = 112 & TVLCT, 000, 127, 255, greenish blue
red = 111 & TVLCT, 255, 000, 000, red
green = 110 &
blue = 109 &
gray = 108 &
dark_yellow = 107 &
&

TVLCT, 000, 255, 000, green
TVLCT, 000, 000, 255, blue

TVLCT, 127, 127, 127, gray

TVLCT, 127, 127, 000, dark yellow

dark purple = 106 TVLCT, 127, 000, 127, dark purple

Ray-tracing 191

dark cyan = 105 TVLCT, 000, 127, 127, dark cyan
dark red = 104 TVLCT, 127, 000, 000, dark red
dark_green = 103 TVLCT, 000, 127, 000, dark_green

dark _blue = 102
blackl = 101
black = 000

TVLCT, 000, 000, 127, dark _blue
TVLCT, 000, 000, 000, blackl
TVLCT, 000, 000, 000, black

R R R R R R

EMPTY

frames = BYTARR(256, 256, 72)

OPENR, 1, !Data Dir + ’‘world anim.img’
READU, 1, frames
CLOSE, 1

; Load the previously generated animation.

MOVIE, frames, Order=0
RETURN, frames
; Display the animation.

END

Example 5: Slicing a Volume

This example renders selected dlices from alarge amount of volume data. The
resulting image, shown in Figure 7-5, is saved to afile and displayed using
show _slic head.

192

PV-WAVE User’s Guide

Figure 7-5 After slices have been rendered from a large quantity of volume data for this
example, the resulting pixel intensity values show the actual density values of the voxel data.

Program Listing

PRO gen_slic_head
width = 125 & height = 85 & depth = 115
load _seg head, head, skull
; Use the procedure load_seg_head.pro to load the byte
; voxel data, set all data outside the head to zero,
; return the “segmented head” as HEAD, and return the
; thresholded surface of the head as SKULL.
vox = BYTARR (width, height, depth)
FOR i=0,depth-2,20 DO BEGIN

vox (*,*,1) = head(*,*,1)

vox (*,*,1+1) = head(*,*,i+1)
; Generate the slices of segmented data we wish to view.
ENDFOR

v = VOLUME (vox)

T3D, /Reset, Rotate = [60.0,0.0,-45.0]
im = RENDER(v, X = 512, y = 512, Transform = !P.T, /Scale)
TVSCL, im

OPENW, 1, !Data_Dir + ’‘sliced_head.img’
WRITEU, 1, im
CLOSE, 1

END

Program Listing

PRO show_slic_head
im = BYTARR (512, 512)
OPENR, 1, !Data Dir + ’‘sliced head.img’
READU, 1, im
CLOSE, 1
TVSCL, im

END

Example 6: Rendering an Iso-Surface with Voxel Values

This example renders a diffuse iso-surface using actual voxel values. The results,
shown in Figure 7-6, are saved to afile and displayed using show_flat head.

Ray-tracing 193

Figure 7-6 This example renders a diffuse iso-surface using actual voxel values. The sur-
face of the head is shaded using diffusion, and the intensity values on top correspond

directly to the voxel density values.

Program Listing

PRO gen flat head
width = 125 & height = 85 & depth = 115
load _seg head, head, skull

; Use the procedure load_seg_head.pro to load the byte
; voxel data, set all data outside the head to zero,

; return the 'segmented head’ as HEAD, and return the

; thresholded surface of the head as SKULL.

overlap = skull * head

overlap (where (overlap GT 0)) =1
head = head * (BYTE(1) - overlap)

; Remove portion of head that overlaps with skull.
vox = BYTARR (width, height, depth)
FOR 1=0,76 DO vox (*,*,1i) = $

head(*, *, 1) + (skull(*, *, i)*BYTE(255))

; Generate the slices of smoothed data we wish to view.
diff = FLTARR(256) & diff(255) = 0.6

amb = FINDGEN (256)/255.0 & amb(255) = 0.0

; Voxel value 255 is special, representing the skull surface.

v = VOLUME (vox, Kdiff = diff, Kamb = amb)

194

PV-WAVE User’s Guide

T3D, /Reset, Rotate = [60.0, 0.0, -45.0]
im = RENDER(v, x = 512, y = 512, Transform = !P.T, /Scale)
TVSCL, im

OPENW, 1, !Data Dir + ’‘flat head.img’
WRITEU, 1, im
CLOSE, 1

END

Program Listing

PRO show flat head
im = BYTARR(512,512)
OPENR, 1, !Data Dir + ’‘flat head.img’
READU, 1, im
CLOSE, 1
TVSCL, im

END

Example 7: Diffuse and Partially Transparent Iso-Surfaces

This example renders a diffuse iso-surface and a partially transparent iso-surface.
The results, shown in Figure 7-7, are saved to afile and displayed using
show_tran head.

Ray-tracing 195

Figure 7-7 The voxel values within the iso-surfaces are completely transparent in this
example, which renders a diffuse iso-surface and a partially transparent iso-surface.

Program Listing

PRO gen_tran_head
width = 125 & height = 85 & depth = 115
load seg head, head, skull

; Use the procedure load_seg_head.pro to load the byte
; voxel data, set all data outside the head to zero,

; return the 'segmented head’ as HEAD, and return the

; thresholded surface of the head as SKULL.

; See the file load_seg_head.pro (in the wave/demo/render directory).
mask = BYTARR (width, height, depth)

mask (*, height/2:*, *) =1

; Generate a mask plane that will split head in half,

; allowing half to be diffuse and rest to be transparent.

shell = skull * mask * BYTE(255) + $
skull * (BYTE(1l) - mask) * BYTE(254)

; Half surface = 255, other half = 254
overlap = skull * head

196

PV-WAVE User’s Guide

overlap (WHERE (overlap GT 0)) = 1

head = head * (BYTE(1l) - overlap)

; Remove portion of head that overlaps with skull.

vox = shell + head

diff = FLTARR(256) & diff(255) = 1.0 & diff(254) = 0.05

; Voxel value 255 is special, corresponding to surface of

; half head. Value 254 corresponds to surface of other

; half. Remaining values are actual unsmoothed head data

; and are not used for this example (i.e., they are completely transparent).

tran = FLTARR (256) & tran(*) = 1.0 & tran(255) = 0.0

tran(254) = 0.95

v = VOLUME (vox, Ktran = tran, Kamb = FLTARR(256), Kdiff = diff)
T3D, /Reset, Rotate = [60.0, 0.0, -45.0]

im = RENDER (v, x = 512, y = 512, Transform = !P.T)

TVSCL, im

OPENW, 1, !Data Dir + ’‘trans_ head.img’
WRITEU, 1, im
CLOSE, 1

END

Program Listing

PRO show_tran head
im = BYTARR(512, 512)
OPENR, 1, !Data Dir + ’‘trans_head.img’
READU, 1, im
CLOSE, 1
TVSCL, im

END

Example 8: Rendering Iso-Surfaces with Transformation Matrices

This example renders two diffuse iso-surfaces as well as actual voxel values. The
results, shown in Figure 7-8, are saved to afile and displayed using
show_ core_head.

Ray-tracing 197

Figure 7-8 Two separate volumes are rendered simultaneously in this example, each using
a different transformation matrix.

Program Listing

PRO gen core_ head

dx
dx

width = 125 & height = 85 & depth = 115
load seg head, head, skull

; Use the procedure load_seg_head.pro to load the byte
; voxel data, set all data outside the head to zero,

; return the 'segmented head’ as HEAD, and return the
; thresholded surface of the head as SKULL.

overlap = skull * head

overlap (WHERE (overlap GT 0)) = 1

head = head * (BYTE(l) - overlap)

; Remove portion of head that overlaps with skull.
vox = head + (skull * BYTE(255))
circle = BYTARR(width, height)

radius2 = 16 * 16

; Create a circle (used for CYLINDER) mask plane.
FOR x=0, width-1 DO BEGIN

= x - width / 2

= dx * dx

198

PV-WAVE User’s Guide

FOR y=0, height-1 DO BEGIN

dy = y - height / 2
dy = dy * dy
IF ((dx + dy)

circle(x, vy)

ENDIF
ENDFOR
ENDFOR

core =

core (*, *,

vox (*, *,

ENDFOR

diff =

v0 = VOLUME (vox,
; Surface and interior of skull.

LE radius2) THEN BEGIN

1

BYTARR (width, height, depth)
; Mask out the core sample and "subtract" out from slices.
FOR z=0,

z)

vox (*,

vox (*,

FLTARR (256)
amb = FINDGEN (256)/255.0 & amb(255) =
; Voxel value 255 is special, representing the skull surface.

T3D, /Reset,

vl = VOLUME (core,

; Core sample.
T3D, /Reset,
im = RENDER(vO, V1,

TVSCL,

OPENW,
WRITEU,
CLOSE,

END

im

1/

1,

1

*
’

’

depth-1 DO BEGIN

Z)

z) * circle

z) - core(*, *,

& diff (255) = 0.6

Z)

0.0

Kdiff = diff, Kamb = amb)
Translate=[0.0, 0.0, 1.0]
Transform = !P.T, Kdiff = diff, Kamb = amb)
Rotate = [60.0, 0.0, -45.0]
X = 512, y = 512, Transform = !P.T, /Scale)

!Data Dir

im

Program Listing

PRO show_core head

im = BYTARR (512,

OPENR,
READU,
CLOSE,
TVSCL,

END

ll
1,
1

im

+

512)

"core_head.img’

!Data Dir + ’core head.img’

im

Ray-tracing 199

Displaying Rendered Images

Many of the rendering routines both render and display images. However, three
rendering functions— POLY SHADE, VOL_REND and RENDER — use the
Standard Library procedures TV and TV SCL to display rendered images.

Example programs that demonstrate this usage are listed below:
* Seesphere demo3 for an example of using TVSCL with the POLY -

SHADE function.

* Seesphere demo2 for an example of using TV with the POLY SHADE
function.

* Seevol demo2 for an example of using TVSCL with the VOL_REND
function.

» Seetheprogramsin the section RENDER Examples on page 187 for examples
of using TV and TV SCL with the RENDER function.

200 PV-WAVE User’s Guide

Working with Date/Time Data

Data often follows aregular pattern related to the dates and times on which busi-
nessis conducted or measurements are recorded. This data is often represented in
relation to several levels of date/time information such as seconds, minutes, hours,
days, weeks and years. In conjunction with the PLOT and OPLOT procedures, the
date/timeroutines et you generate two-dimensional plotsthat display multiplelev-
els of labeling for the date/time axis.

Introduction to Date/Time Data

PV=WAVE's date/time feature provides a precise method for creating two-dimen-
sional plotswith date/time datarepresented onthe X axis. Onceyou have generated
date/time data, you can create plotsthat reflect various|evels of timeintervals. The
PLOT procedure automatically draws and labels the date/time axis. Figure 8-1
illustrates a plot with two levels of date/time labeling:

201

Cow Jones Industrials

3204

— Thousands of Shares Traded

400 —

300 —

200 — N
100 —

Week ——————— 7 [i4la1als 1 [1oanls (1 himfesh B linlee s e [13 oo lzal e li7 24

Month——— Lanuary chinsary [Mareh [April iy ung

Axis Title

1591

Figure 8-1 Date/time Plot

The date/time axis is well-suited for the display of datathat follows an hourly,

daily, weekly, or monthly pattern; financial and meteorological data are two exam-
ples of thistype of data. By default, PV=WAVE |abels a date/time axis with up to
six levels of tick labelsthat show the time frame of the datathat isbeing displayed.

The four basic steps for creating a date/time plot are:

O Read datainto PV=-WAVE.

@ Convert data representing dates and/or times to date/time data.
Q Manipulate the date/time data (optional).

Q Plot the data.

Reading in Your Data

Read your data from an input fileinto PV=WAVE using a command such as
DC_READ_FREE, DC_READ_FIXED, READF or READU.

The DC_READ_FIXED and DC_READ_FREE functions can be used with the
DT_Template keyword to read data directly into date/time variables. See the
descriptions for the DC_READ_FIXED and DC_READ_FREE functionsin the

202

PV-WAVE User’s Guide

PV-WAVE Reference for detailed information on these routines and examples of
their use.

The READU and READF procedures can be used to read dates/times into atomic
data types, which must then be converted into date/time variables. For a complete
account of these input procedures, see Chapter 8, Working with Data Files, in the
PV=WAVE Programmer’s Guide.

Converting the Data to the Date/Time Format

If you read your datainto PV=WAV E with the READU or READF procedures, you
must use conversion functions to convert the date/time information into date/time
variables.

There are four functions that you can use to convert your date/time data:
STR_TO_DT, VAR_TO_DT, SEC _TO DT, andJUL_TO_DT. Thefunctionyou
use depends on the configuration of the data you are reading in. See Converting
Your Data into Date/Time Data on page 207 for details.

TIP In someinstances, your input file may not contain explicit date/time informa-
tion. You can generate a scalar date/time variable with one of the conversion
functions and then use the DTGEN function to create a date/time variable contain-
ing an array of date/time structures. See Generating Date/Time Data on page 211
for details. Also see Examples 1, 2, and 3 in Creating Plots with Date/Time Data
on page 217.

Manipulating the Date/Time Data

After you have created date/time data, you may want to alter it. PV=WAVE pro-
vides two functions, DT_ADD and DT_SUBTRACT, to add to or subtract date/
time intervals from a date/time variable. You may also want to eliminate holidays
and weekends from your datawith the CREATE_HOLIDAY S and
CREATE_WEEKENDS procedures. For details, see Manipulating Date/Time
Data on page 212.

Plotting Your Data

You can plot your date/time datawith PLOT or OPLOT. PV=WAV E automatically
generates labels and tick marks for your date/time data. If you want to modify the
appearance of the date/time axis, PV=WAV E provides several keywords. For
details, see Creating Plots with Date/Time Data on page 217.

Introduction to Date/Time Data 203

The Date/Time Structure
Date/Time datais stored in astructure (!DT) containing the fields shown in thefol-

lowing table.

Fields of the IDT Structure

Element Data Type Valid Range

IDT.Year integer 0 to 9999

IDT.Month byte 1to12

IDT.Day byte 1to31

IDT.Hour byte 0to23

IDT.Minute byte 0to59

IDT.Second floating point 0.0000 to 59.9999

IDT.Julian double precision The number of days calcul ated
from September 14, 1752. The
decimal part containsthetime asa
fraction of aday.

IDT.Recalc byte Recalculation flag: setting thisflag
to 1 forces the julian day to be
recalculated.

For example:

date = {!dt, 1992,4,27,7,45,40.0,87519.323,0}

PRINT, date

{ 1992 4 27 7 45 40.0000 87519.323 0}

For more information on structures, see Chapter 6, Working with Sructures, in the
PV-WAVE Programmer’s Guide.

The Julian Field

PV=WAVE uses the Julian field to perform many date/time calculations. A date/

time value isinterpreted as aday in a series of days that begins on September 14,
1752. For example, 2 is equated with September 15, 1752. The decimal part of the
Julian day indicates the time as a portion of the day. For example, for May 1, 1992

a 8:00 am, the Julian day is 84702.333.

204

PV-WAVE User’s Guide

The Recalc Field

If you modify a date/time variable directly by assigning a new value to one of its
elements, you must also set the Recalc flag (the last element of the date/time struc-
ture) to 1. Thisrecalculatesthe Julian day for the new date. For example, for adate/
time variable date that looks like:

date = {!dt, 1992, 4, 27, 7, 45, 40.0, $
87519.323, 0}

If you add three days to this variable by assigning anew valueto date.day
directly.

date.day = 30

The new value of date is:

PRINT, date

{ 1992 4 30 7 45 40.0000 87519.323 0}

Noticethat the Julian field 87519.323 has not changed. You must set therecalc flag
to 1 for date to obtain the correct Julian day:

date.recalc = 1

The Julian date is then recal culated automatically when the date/time variable is
used with any of the date/time functions.

NOTE Rather than modifying adate/time variable by assigning anew valueto one
of its elements, you should usethe DT_ADD and DT_SUBTRACT functionsto
create new variables. If you use these functions, the Julian day is automatically
recal cul ated.

Creating Empty Date/Time Variables

Normally, you create date/time variables using the conversion functions or the
DC_READ functions. However, you can also create an “empty” date/time variable
by assigning !DT to avariable name. Here are a couple of examples:
date = {!DT}

; Creates a date/time structure filled with zeros.

PRINT, date
{ 00000 0.00000 0.0000000 O}

datel = REPLICATE ({!DT}, 3)
; Creates 3 structures filled with zeros.

The Date/Time Structure 205

PRINT, datel

{ oo0oo0000.00000 0.0000000 O}
{ oo0oo000O00.00000 0.0000000 O}
{ oo0oo0000.00000 0.0000000 O}

NOTE Whenyouusethe DC_READ functionswith the DT_Template keyword to
import and convert data, you must use this REPLICATE method to create an
“empty” array variable containing date/time structures. Once you have created this
array variable, you can read date/time data from afileinto the variable. See Creat-
ing Plots with Date/Time Data on page 217 for examples.

Reading in Your Date/Time Data

Before you can generate a date/time axis on a plot, your data must be read in and
converted to date/time data. There are three methods for generating variables con-
taining date/time data:

You can read data directly into date/time variables using the DC_READ func-
tionsin conjunction with the DT_Template keyword. See for an example.

Refer to the section Transferring Date/Time Data in Chapter 8 of the PV=-WAVE
Programmer’s Guide; this section contai ns an example showing date/time data
being transferred using DC_READ_FIXED. You can also refer to the descrip-
tionsfor theDC_READ_FIXED and DC_READ_FREE proceduresin the PV-
WAVE Reference for other examples.

You can read date and time data as atomic data types and then use conversion
procedures to create date/time variables. These conversion routines are dis-
cussed in the next section.

Refer to the section Transferring Date/Time Datain Chapter 8 of the P\V=WAVE
Programmer’s Guide; this section contains an exampl e showing date/time data
being transferred using the READF function. You can also refer to the descrip-
tions of the READF and READU functionsin the PV-WAVE Reference for
more examples.

You can use the DTGEN function to generate date/time data for an input file
that does not contain date/time information such as data generated by a com-
puter time stamp. See Generating Date/Time Data on page 211.

206

PV-WAVE User’s Guide

Converting Your Data into Date/Time Data

If you are importing date/time data into PV=WAVE, four functions simplify con-
verting this datainto date/time data. These functions are:

e STR_TO_DT — Converts string data or variables containing string datainto
date/time variables.

* VAR_TO_DT — Converts numeric variables containing date/time informa-
tion into date/time variables.

e SEC _TO_DT — Converts seconds into date/time variables.
e JUL_TO_DT —Converts the Julian day into a date/time variable.

Error checking is performed by these conversion functions to verify that numbers
assigned to the date/time structure elements fall within valid ranges. For more
information about these functions, see PV-WAVE Reference.

NOTE If you read and converted your data with the DC_READ routines, you do
not need to use these functions to convert your data.

The STR_TO_DT Function

Thisfunction converts date and time data stored as stringsinto date/time variables.
The function has the form:

result = STR_TO_DT(date_strings[, time_strings]|)

TheDate Fmt and Time_Fmt keywords are used to describethe format of theinput
string data by specifying atemplate to use as the datais read. These templates are
listed in the following table.

Valid Date Formats for STR_TO_DT Function

\Ij:l'iv;ord Template Description Exglml?lgggr
1 MM*DD*[YY]YY 05/01/92

2 DD*MM*[YY]YY 01-05-92

3 ddd*[YY] YY 122,1992

4 DD* mmm[mmmmmm]*[YY]YY 01/May/92
5 [YY]YY*mm*DD 1992-01-01

Converting Your Data into Date/Time Data 207

The abbreviations used in the template descriptions are:

MM —The numerical month. The month does not need to occupy two spaces. For
example, you can enter a 1 for the month of January.

DD — The numerical day of the month. The day does not need to occupy two
spaces. For example, for May 5, the numerical day can be 5.

[YY]YY —The numerical year. For example, 1992 can be entered as 92 or 1992.

ddd eeThe numerical day of theyear. The day does not need to occupy three spaces.
For example, February 1is 32.

mmm[mmmmmm] — The full name of the month or its abbreviation depending on
how the system variable IMonth_Namesis set.

* —Representsadelimiter that separatesthe different fields of data. The delimiter
can also beadash (/), acolon (:), ahyphen (-), period (.), or acomma. (,).

Valid Time Formats for STR_TO_DT Function

Keyword - Examples for
Value Template Description 1:30 p.m.
-1 HH*Mn* SS[.SSS) 13:30:35.25
—2 HHMnN 1330

No separators are allowed between
hours and minutes. Both hours and
minutes must occupy two spaces.

The abbreviations used in the template descriptions are:

HH —The numerical hour based on a 24-hour clock. For example, 14is2 o’ clock
in the afternoon. For the -1 format, both spaces do not need to be occupied. How-
ever, the- 2 format requires that both spaces be occupied. For example, 1:00inthe
morning must be entered as 01.

Mn — The number of minutesin the hour. For the -1 format, both spaces do not
need to be occupied. However, the-2 format requires that both spaces be occupied.
For example, 6 minutes must be entered as 06.

SY[.SSS] — The number of secondsin the minute. A decimal part of asecond is
optional.

* —Represents adelimiter that separates the different fields of data. The delimiter
can adso beadash (/), acolon (3), a
hyphen (-), or acommac(,).

208

PV-WAVE User’s Guide

NOTE You do not need both adate and time to usethe STR_TO_DT function.
You can enter adate only or atime only. For more information, refer to the
STR_TO_DT function in the PV-WAVE Reference.

Example 1
date2 = STR TO DT('3-13-92’, ’'14:12:22', $
Date Fmt = 1, Time Fmt = -1)

; The data contained in the strings corresponds to the date
; format MM DD YY and the time format HH Mn SS.

DT PRINT, date2
03/13/1992 14:12:22

Example 2
date3 = STR_TO DT(’'4-12-92', Date Fmt = 1)
; You can convert a date without a time.

DT PRINT, date3
04/12/92

The VAR_TO DT Function

If you have read date/time elements into numeric variables, you can use the

VAR _TO_DT function to convert these variables into date/time variables. This
function isuseful for converting time stamp data that does not conform to aformat
used by the STR_TO_DT function.

This function has the form:

result = VAR_TO_DT(yyyy, mm, dd, hr, mn, ss)

Example

This example illustrates how to convert a numeric date/time value into date/time
dataand verify that a date/time variable has been created using the PRINT
procedure.

z = VAR _TO DT (1992, 11, 22, 12, 30)
PRINT, z
{ 1992 11 22 12 30 0.00000 87728.521 0}

Converting Your Data into Date/Time Data 209

The SEC_TO DT Function

In some instances, scientific and engineering data has been collected at regular
intervals over long periods of time from a specified start date. Some examples
include sun spot activity or seismic dataabout an activevolcano. TheSEC TO_DT
function is designed to handle this type of data. It converts any number of seconds
into date/time variables. These variables are cal culated from a specified basetime.
Thedefault base, September 14, 1752, isdefined by the systemvariable! DT_Base.
You can change the base time by using the keyword Base.

This function has the form:

result = SEC_TO_DT(num_of seconds)

Example

The example shows how to convert 20 seconds to a date/time variable. The exam-
ple uses a base start date of January 1, 1970.
date = SEC_TO DT (20, Base = ’"1-1-70', $
Date Fmt = 1)
PRINT, date
{ 1970 1 1 0 0 20.0000 79367.000 0}

The JUL_TO_DT Function

This function converts a Julian number into a date/time variable. For more infor-
mation on how to use this function with the table functions, refer to the examples
in the section Using Date/Time Data in Tables on page 251.

This function has the form:

result =JUL_TO_DT(julian_date)

Example

dt = JUL_TO DT(87507)

; Converts the Julian day 87507 to a date/time variable.
PRINT, dt
{ 1992 4 15 0 0 0.00000 87507.000 0}

210

PV-WAVE User’s Guide

Generating Date/Time Data

You can generate date/time datafor datafilesthat do not have date and time stamps.
There are two steps:

O Createaninitia date/time structure using one of four conversion functions:
STR_TO DT, VAR TO DT, SEC_TO DT, or JUL_TO DT.

O Usethe DTGEN function to create a variable from the original function that
contains an array of date/time structures.

The DTGEN function has the basic form:
result = DTGEN(dt_start, dimension)

Example 1

Assumethat you have afile that contains seismic data collected on an hourly basis
for the month of April, 1992. The file contains the seismic data, but does not have
atime stamp appearing with each data entry. The file looks like:

Seismic data
1.03
2.04
1.33
4 .45

Thefirst dataentry (1.03) wastaken at 1:00 am on April 1, 1992. Each successive
entry was taken on an hourly basis for the rest of the month. To generate date/time
datafor all of the hours of the month:

datel = VAR_TO DT(92,4,1,1)
; Use VAR_TO_DT to create the initial date/time variable for
; April 1, 1992, 1:00 a.m.

PRINT, datel

{ 1992 4 1 1 0 0.00000 87493.042 0}

dtarray = DTGEN(datel, 720, /hour)
; Generate a date/time array variable that contains a date/time
; structure for every hour in the month of April
; (24 hours * 30 days =720 hrs).

PRINT, dtarray

{ 1992 4 1 1 0 0.00000 87493.042 0}

Generating Date/Time Data 211

{ 1992 4 1 2 0 0.00000 87493.083 0}
{ 1992 4 1 3 0 0.00000 87493.125 0}

{ 1992 5 1 0 0 0.00000 87523.000 0}

Example 2

You can a so use the Compress keyword with the DTGEN function. This example
creates a date/time variable that contains al of the weekdays for the month of
January.

datel = VAR _TO DT(1992,1,1)
; Creates an initial date/time variable to use with the DTGEN function.

CREATE WEEKENDS, [’sat’, ‘sun’]
; Defines the weekend days.

dates = DTGEN (datel, 23, /Compress)
; Generates a date/time variable that contains the weekdays for
; January. The Compress keyword excludes the weekend days.

DT PRINT, dates

01/01/1992

01/02/1992

01/03/1992

01/06/1992

01/07/1992

Notice that the 4th and 5th of January have been removed (compressed) from the
result. These daysfall on Saturday and Sunday.

Manipulating Date/Time Data

PV=WAV E provides several functionsfor manipulating date/time variables. These
functions are:

- DT_ADD
« DT_SUBTRACT
« DT_DURATION
« CREATE_WEEKENDS

212

PV-WAVE User’s Guide

« CREATE_HOLIDAYS
« LOAD_HOLIDAYS

- LOAD WEEKENDS

- DT_COMPRESS

Once you have converted your date/time data, you may want to alter it. The manip-
ulation functions provide you with the tools for adding or subtracting date/times,
or removing holidays and weekends from your date/time variables. This section
briefly describes each of these functions. For more information about these func-
tions, see the PV-WAVE Reference.

Adding to a Date/Time Variable

You may wish to add any number of date/time units to one or more existing date/
time variables with the DT_ADD function. The form of the functioniis:

result = DT_ADD(dt_value)

Example 1
This example illustrates how to add 30 hours to a single date/time variable to pro-
duce a new variable.
dtvar = VAR_TO DT (1992, 12, 31, 15)
; Create a date/time variable.

dtvarl= DT_ADD(dtvar, Hour = 30)

; Create a new date/time variable by adding thirty hours to dtvar,
; an existing date/time variable.

PRINT, dtvarl
{ 1993 1 1 21 0 .0000 87768.875 0}

Example 2
The second example shows how to usethe DT_ADD function to create adate/time
variable that contains all the days of the month of May excluding weekends.

dates = REPLICATE ({!DT}, 21)
; Creates a date/time variable to read date/time data into.

CREATE_WEEKENDS, ["sun", "sat"]
; Defines Saturday and Sunday as weekend days.

dates(0) = VAR TO DT (1992, 5, 1)
; Creates an initial date/time variable to use with DT_ADD.

FOR I = 1,20 DO dates(I)=DT_ADD(dates(I-1), $

Manipulating Date/Time Data 213

/day, /Compress)

; Generates Date/TIme structures for the remaining days of the
; month. The Compress keyword excludes the weekend days.

Subtracting from a Date/Time Variable

Thefunction DT_SUBTRACT subtracts avalue from adate/time variable or array
of variables. (Thisfunctionisvery similar to DT_ADD.) The basic form of the
functionis:

result = DT_SUBTRACT(dt_value)

Example

dtvar = VAR _TO DT (1993, 1, 1, 21)
; Create a date/time variable.

dtvarl= DT _SUBTRACT (dtvar, Hour = 30)
; Create a new date/time variable by subtracting 30 hours from dtvar.

PRINT, dtvarl
{ 1992 12 31 15 0 0.0000 87767.625 0}

; The new date/time variable is 30 hours less than dtvar. Notice that
; for this example the year, month, day and Julian day have changed.

Finding Elapsed Time between Two Date/Time Variables

TheDT_DURATION function determines the elapsed time between two date/time
variables. Thereturn unitsareadouble-precision valueor array of valuesexpressed
in days and fractions of days. The function has the form:

result =DT_DURATION(dt_var_1, dt_var_2)

Example

Assume two date/time variables, dtarray and dtarrayl, have been created.
The contents of dtarray are:

{ 1992 3 17 6 35 23.0000 87478.275 0}
{ 1993 4 18 7 38 47.0000 87875.319 0}

The contents of dtarrayl are:

{ 1989 5 22 9 32 22.0000 86448.397 0}
{ 1995 7 26 10 33 27.0000 88704.440 0}

You can usethe DT_DURATION function to find the number of days between cor-
responding elements of the arrays.

214

PV-WAVE User’s Guide

dtdiff = DT DURATION (dtarray, dtarrayl)
PRINT, dtdiff
1029.8771 -829.12130

Note that the function returns a negative number for the second val ue since the sec-
ond element in dtarrayl ismore recent than the second element in dtarray.

Excluding Days from Date/Time Variables

You can exclude holidays and weekend days from date/time plots using the follow-
ing functions.

CREATE_HOLIDAYS Procedure

If you wish to skip particular days such as holidays in your plots, first you must
define them. The form of the procedureis:

CREATE_HOLIDAYS, dt_list

Example

Assume that you want to exclude Christmas and New Years from a date/time
variable.

dates = [’/1-1-92’, '12-25-92']
; Create a variable that contains the dates of holidays you wish to
; exclude.

holidays = STR_TO DT (dates, Date Fmt = 1)
; Create a variable that contains the date/time structures for
; Christmas and New Year.
CREATE HOLIDAYS, holidays
; Use the CREATE_HOLIDAYS procedure to create and store the
; holidays in the system variable !Holiday_List.
PRINT, !Holiday List
{ 1992 12 25 0 0 0.00000 87761.000 0}
{ 1992 1 1 0 0 0.00000 87402.000 0}

{oooo0o00000 0}

NOTE You can create and store up to 50 holidays. To exclude the holidays from
date/time variables, you use the keyword Compress or the system variable

Manipulating Date/Time Data 215

IPDT.Compress. The system variable !PDT.Exclude Holiday must also be setto a
value of 1 (the default value).

LOAD HOLIDAYS Procedure

This procedure is caled by the CREATE_HOLIDAY S procedure. It passes the
value of the 'Holiday List system variable to the conversion functions. You need
to run this procedure after restoring any session in which you used the
CREATE_HOLIDAY S function or if you directly changed the value of the
IHoliday_List system variable.

CREATE _WEEKENDS Procedure

Thisfunction allows you to define certain days of the week to skip when perform-
ing date/time operations. CREATE_WEEKENDS defines weekend days and
makes this definition available to the conversion functions and procedures. The
syntax of the procedureis:

CREATE_WEEKENDS, day_names

NOTE Do not set al seven daysin the week to be weekend days. Thiswill gener-
ate an error message.

Example

CREATE WEEKENDS, [’Saturday’, ‘Sunday’]
; Makes Saturday and Sunday the weekend days.

PRINT, !Weekend List

1000001

; The system variable !Weekend_List is an array of integers where
; one = weekend and zero = weekday.

LOAD WEEKENDS Procedure

This procedure is caled by the CREATE_ WEEKENDS procedure. It passes the
value of the 'Weekend_L.ist system variable to the conversion functions. You only
need to run this procedure after restoring a session in which you used the
CREATE_WEEKENDS function or if you directly changed the value of the
IWeekend_List system variable.

216

PV-WAVE User’s Guide

NOTE Do not set al seven daysin the week to be weekend days. Thiswill gener-
ate an error message.

Example

PRINT, !Weekend List
0 0 0 0 0 0 1
; Current contents of Weekend_List system variable.
|Weekend List = [1, 0, O, 0, O, 0, 1]
; Add Sunday to the weekend list.
LOAD_WEEKENDS
; Run LOAD_WEEKENDS so the new weekend value will take effect.

DT _COMPRESS Function

This function compresses an array of date/time values. The function returns an
array of floating point values containing the compressed Julian days—all holidays
and weekends are removed from the array.

NOTE Thisfunctionisonly used for specialized plotting applications, such as bar
charts. In most cases, you do not need to use this function. Instead use the Com-
press keyword to remove holidays and weekends from the results of date/time
functions and plots. For detailed information, see the description of the
DT_COMPRESS function in the PV-WAVE Reference.

Creating Plots with Date/Time Data

The plotting procedures, PLOT and OPL OT, in conjunction with keywords can be
used to plot multiple date/time labels and tick levels on the x-axis. The keywords
for the PLOT procedure for date/time include:

o XType

« Hart Leve

* Month_Abbr
* Box

« DT Range

e Max Levels
e Compress

Creating Plots with Date/Time Data 217

The keywords for OPLOT are XType and Compress. You can find a complete
description of all these keywordsin Chapter 3, Graphicsand Plotting Keywords, in
the PV-WAVE Reference.

The following examples show eight different types of plots with date/time axes.

Example 1: Plotting Seconds

This example illustrates how to generate a date/time plot for a data file named
datafile.dat that doesnot contain explicit date and timeinformation, that is,
no time stamp information. The file contains data for every second of the day for
April 1, 1992. The one-column file looks like:

00.355187
91.9201
00.22395
63.9256
97.4526

Thefollowing code generates a plot that shows the first seven seconds of data. The
date/time axis is shown with the maximum of six labels.

fday = VAR TO DT (1992, 4, 1, 1, 1, 1)
; Generates an initial date/time variable to use with the
; DTGEN function.
num = 7
; Creates a variable for generating seven seconds of data.

X = DTGEN (fday, num, /Second)
; Generates a date/time variable with date/time structures for the
; first seven seconds of April.

status = DC_READ FREE(’'datafile.dat’, y, /Col)

; Reads the data from the file datafile.dat and assigns it to the

; variable y. The values for all of the seconds, 86400, are actually
; read into y. However, only the first seven seconds are plotted for
; this example.

PLOT, x, y, Psym = -4
; Plots the first seven seconds of data.

218

PV-WAVE User’s Guide

100
BO— —
BO— —
=]
20 —
ol]
Seconds 5 a,
Minutes :
Hours ——M8MM— 1
Days — 4
Months ——— april
Years————— {ug2

Figure 8-2 A date/time plot showing the first seven seconds of data for April 1, 1992. The
keyword Psym value of -4 connects the data points with solid lines.

Example 2: Plotting Minutes

The second example usesthe samedatafileasExamplel (datafile.dat). The
example shows how you can plot a graph for the data at each minute rather than
each second. The Box keyword draws boxes around thetick marks and |abels of the
date/time axis.

fday = VAR TO DT (1992, 4, 1, 1, 1, 1)
; Generates an initial date/time variable to use with the
; DTGEN function.

num = 20
; Creates a variable to use with the DTGEN function for generating
; an array of date/time structures.

X = DTGEN(fday, num, /Minute)
; Generates a date/time variable with date/time structures for
; 20 minutes in April.

status = DC_READ FREE(’'datafile.dat’, y, /Col)
; Reads the data from the file datafile.dat into the variable y.

PLOT, X, y, Psym=-4, /Box
; Plots the first 20 minutes of data with boxes around the
; date/time axis.

Creating Plots with Date/Time Data 219

100 T
80— —
60— —
11_0 —_ —_
20+ —
. ol]
Minutes —— | o 2" 4 fa s [0 bz [14 [1s bie [eo
Hours — @ [q:
Days ——— 1
Months ———— [agri|
Years———— |10g4

Figure 8-3 A date/time plot for the first twenty minutes of April 1. The Box keyword draws
the boxes around the date/time labels.

If no boxes are drawn for the date/time axis, labels are centered with respect to the
tick marks for seconds, minutes, hours, and days. Weeks, months, quarters, and
years are always left-justified. See Example 1. With boxes, the labels are | eft-justi-
fied in relation to the tick marks.

Example 3: Plotting Hourly Data
Thethird example uses the same datafile as Examples 1 and 2. This example plots
datafor every hour of the day April 1.
fday = VAR TO DT (1992, 4, 1, 1, 1, 1)
; Creates an initial date/time variable to use with the DTGEN function.

num = 24

; Creates a variable used with the DTGEN function to create an
; array of date/time structures.

X = DTGEN (fday, num, /Hour)
; Creates 24 date/time structures for the hours of the day.

status = DC_READ FREE(’datafile.dat’, y, /Col)
; Reads the data into the variable .

Plot, x, y, Psym = -4, /Box

220

PV-WAVE User’s Guide

100 T T T T T T T T T T T T T

B0

630

20

Hours —— [v [z T4 e Il [Tior [1z0 hae lee l1e bor o o
Days ——— |31]1 2
Months — 8=all
Years——— 1932

Figure 8-4 A date/time example with the data at each hour for April 1 plotted.

Example 4: Plotting Daily Sales Data

Examples 4 through 8 plot date/time datafor afilenamed salesl.dat that con-
tains date/time stamps for product sales. The file has ten columns. Each data set
column has an accompanying date stamp column:

Product Sales
Daily Weekly Monthly Quarterly Yearly

00 1/01/1991 1591/06/91 1088 1/31/91 3000910101 5280 85941
911/02/1991 1521/13/91 10852/28/91 1942910401 6581 86307
051/03/1991 202 1/20/91 0827 3/31/91

2345911001 7621 87037

1147 12/31/31
150 12/31/91

57 12/31/1991

NOTE Thisdatafileisan examplefileonly. It isused to generate plotsfor various
levels of date/time data.

Creating Plots with Date/Time Data 221

Example 4 plots the daily sales for the month of January. Weekend days are com-
pressed with the keyword Compress. The DT_Range keyword is used to plot a
portion of the date/time dataread in from thefile.

dates = REPLICATE ({!DT}, 60)

; Create date/time structures to hold date/time data for the days
; in January and February.

CREATE WEEKENDS, [’sun’, ’‘sat’]
; This procedure defines the weekend days.

status = DC_READ FREE(’salesl.dat’, amount, $
dates, /Col, Dt _Template = [1], $
Delim = [" "], NSkip = 2, $
Get Columns = [1, 2])
; Reads the data from Column 1 into the variable amount.
; Reads the data from Column 2 into the variable dates.
; The date/times from Column 2 are converted to date/time
; data. The NSkip keyword skips over the first two header
; lines in the file.

sdate = VAR TO DT(1991, 1, 1)
edate = VAR TO DT(1991, 1, 30)

; Creates variables to be used with the DT_Range keyword.
; These variables establish a range for plotting each day of the
; month in January.

PLOT, dates, amount, /Compress, $

Start Level = 3, $

DT Range = [sdate.julian, edate.julian]
; Plots the date/time data on the x-axis and the daily sales for
; the month of January on the y-axis. Weekends are
; compressed. Setting the Start_Level keyword to 3 forces the
; plot to use days as the first axis level. The DT_Range keyword
; defines the range of date/time data that will be plotted. In this
; example only the days of January are plotted.

222 PV-WAVE User’s Guide

1o T
B0 —
60— —
40— -
20— 1
of 4
Days————— 31 1 2 3 4 7 8 9 1011141316 17 18 21 22 23 24 27 28 29 30 31
Months————— January
Years————— 1981

Figure 8-5 A date/time plot illustrating daily product sales for January. The DT_Range key-
word restricts the days to January only. The Compress keyword eliminates weekend days
(January 5, 6, 12, 13, 19, 20, 26, and 27).

Example 5: Plotting Sales Per Week

Example 5 plotsthe weekly salesfrom January 1 to May 6. The data and date/time
areread in from Columns3and 4 of salesl.dat.

dates = REPLICATE ({!DT}, 18)
; Create date/time structure to read date/time data into.
status = DC_READ FREE(’salesl.dat’, amount, $
dates, /Col, Dt Template = [1], $
Delim = [" "], Get Columns = [3,4], s
NsSkip = 2)
; Read sales data into the amount variable. Read and convert
; date/time data into the dates variable.
PLOT, dates, amount, Start Level =4, PSym = -4
; The keyword Start_Level selects weeks for plotting.

Creating Plots with Date/Time Data 223

400 T T —TT T T T T T T T T T T T

200

a | 1 1 |
Weeks —M M 7 14 Z1 z3 4+ 11 18 25 4 11 18 5 1 8 19 2@ I9 &
Months ———— Jaruary February March April
Years —— 1841

Figure 8-6 Date/time plot of product sales for each week from January 7 to May 6. The
Start_Level keyword value of 4 ensures that the weekly amounts are plotted on the first level.

Example 6: Plotting Monthly Sales

Example 6 plots the total salesfor each month. This datais contained in Columns
5and 6 of salesl.dat. The keyword Month_Abbr automatically abbreviates
some month names to three characters depending on the available space on the
axis. Inthisexample, no labels would be shown for the months of February or Sep-
tember without this keyword.

dates = REPLICATE ({!DT}, 12)
; Creates date/time structures for the months of the year.

status = DC_READ FREE(’salesl.dat’, $
amount, dates, /Col, Dt_Template = [1], $
Delim = [" "], NSkip = 2, ¢
Get Columns = [5,6])
; Reads monthly sales data into the amount variable.
; Reads date/time data into the variable dates as date/time
; data.

PLOT, dates, amount, /Month Abbr

; Plots data with several months abbreviated to fit labels for
; all 12 months on the date/time axis.

224

PV-WAVE User’s Guide

1500

1000

500 — —

Months —— Jan Fet March Aprl Moy Junse WJuly August Sep Qo Haw
Years ——— 14981

Figure 8-7 The monthly sales for 1991. The Month_Abbr keyword allows all month names
to be written on the date/time axis. Without this keyword, no labels would be shown for
February or September.

Example 7: Plotting Quarterly Sales

This example plots the data from Columns 7 and 8 of the samplefile
salesl.dat. Thedateinformationisnot in any format that can be used with the
DT_Template keyword. Therefore, the dates are first read and then converted using
the VAR _TO_DT function.

The Sart_Level keyword insuresthat the quarterly sales are printed out on thefirst
level. The Max_Levelskeyword definesoneleve of axislabels. An OPLOT isaso
shown for the projected sales for each quarter of the year (the individual diamonds
in Figure 8-8). The OPLOT does not generate any tick marks or labels; you can
only plot asecond set of data on the original date/time axis.

year = intarr(4) & month = intarr(4)
day = intarr(4)

; Creates variables to hold the date information for the four quarters of the year.
status = DC_READ FIXED(’salesl.dat’, amount, $

year, month, day, /Col, NsSkip = 2, $
FORMAT = (’39X, I4, 1X, 3I2)')

; Reads the sales data into the amount variable. Reads the
; date information into the variables, year, month, and day.
dates = VAR TO DT(year, month, day)
; Converts the date information to a date/time variable.

PLOT, dates, amount, Start Level = 6, /Max_Levels
; Plots the data with only one level of axis labeling.

Creating Plots with Date/Time Data 225

; Without the Max_Levels keyword assignment, the labels
; for years would also be printed out.

amountl = [3507, 2310, 2917, 1807]
; These are the projected sales for each quarter of 1991.
OPLOT, dates, amountl, PSym = 4
; Plots the projected sales of each quarter as individual diamonds.

4000

2000

Quarters ——— @1 o2 o3

Figure 8-8 The quarterly sales for 1991. The plot also shows the projected sales (individual
diamonds) for each quarter plotted with the OPLOT procedure.

Example 8: Plotting Yearly Sales

Example 8 plots the data from Columns 9 and 10 of salesl.dat. The Julian
dates are supplied in Column 10. Column 9 contains the sales for each of the last
four years.

d = lonarr(4)
; Defines the d variable as a long array containing 4 elements.
; This variable will contain the Julian dates read in from Column 10.

status = DC_READ FREE(’salesl.dat’, $
amount, d, /Col, Delim = [" "], $
NSkip = 2, Get Columns = [9, 10])

; Reads the sales data into the amount variable. Reads the
; date information into variable d.
dates = JUL_TO DT (d)
; Converts the date information in variable d to a date/time variable.

226

PV-WAVE User’s Guide

PLOT, dates, amount, Start Level = 7
; Plots yearly sales. The Start_Level keyword ensures that the years
; are labeled on the first level of the x-axis. If this keyword were
; omitted, quarters would be the first level of labeling.

5000 T T T T T T T T

GOOa— -

4000 — —

000 -

a 1 I
Years ——————— 198& 1984 1990 1991

Figure 8-9 The yearly sales for the last four years. This plot can be generated using the
JUL_TO_DT function (Example 8) or the XType keyword (Example 9).

Example 9: Plotting Yearly Sales with the XType Keyword

PV=WAV E provides another method for plotting date/time dataif your file contains
Julian days asin Example 8. You can set the XType plot keyword to avalue of 2 to
generate a date/time axis. Since the Julian days are provided in Column 10 for the
yearly sales datain Column 9, you can plot these two columns as follows:

dates = LONARR (4)
; Defines the dates variable as a long array containing 4 elements.
status = DC_READ FREE(’salesl.dat’, amount, $
dates, /Col, Delim = [" "], $
Get Columns = [9, 10], NSkip = 2)
; Reads the sales data into the amount variable.
; Reads the date information into the dates variable.
PLOT, dates, amount, XType=2, Start Level=7
; Plots the data as shown in Figure 8-9.

See for moreinformation about the XType keyword. Also seethe description of the
DT_COMPRESS function in the PV-WAVE Reference.

Creating Plots with Date/Time Data 227

Writing Date/Time Data to a File

There aretwo methodsfor writing date/time datato afile. You canuse DC_WRITE
functions to both convert and write data or you can first convert the date/time data
and then writeit to afile.

Using DC_WRITE Functions

You can use DC_WRITE functions to convert data from the date/time format to
another format and then write the new date/time datato afile. The DC_WRITE
functions are easy to use because they automatically handle many aspects of data
transfer, such as opening and closing the datafile.

Thetwo DC_WRITE functions that you can use to convert and write data are
DC WRITE_FIXED and DC_WRITE_FREE. For examplesand adetailed discus-
sion of these two functions, refer to their descriptions in the PV-WAVE Reference.

NOTE By default, DC_WRITE_FREE generates CSV (Comma Separated Value)
ASCII datafiles.

Using Conversion Routines

You can also use three conversion routines in conjunction with the WRITE and
WRITEU proceduresto convert date/time datafor output to afile. The conversion
routines are:

« DT_TO_SEC
- DT_TO_STR
- DT_TO_VAR

DT _TO_STR Procedure

This procedure converts date/time variables to strings. The procedure has the form:

DT_TO_STR, dt_var

Example

Assume you have a date/time variable named date1l that contains the following
date/time structures:

{ 1992 3 13 1 10 34.0000 87474.049 0}

228

PV-WAVE User’s Guide

{ 1983 4 20 16 18 30.0000 84224.680 0}
{ 1964 4 24 5 7 25.0000 77289.213 0}

To convert to data, usethe DT_TO_STR procedure:

DT TO_STR, datel, d, t, Date Fmt=1, Time Fmt=-1
; Converts date/time data. Stores the date data in d and the
; time data in t. The Date_Fmt and Time_Fmt keywords define
; the formats that date1 is using. DT_TO_STR uses the same
; formats as STR_TO_DT.
; See The STR_TO_DT Function on page 207 for an
; explanation of valid formats.

PRINT, d

03/13/1992 04/20/1983 04/24/1964
PRINT, t

01:10:34 16:18:30 05:07:25

DT _TO_ VAR Procedure

This procedure converts date/time variables into variables that contain numerical
date/time information. The procedure has the form:

DT_TO_VAR, dt_value

Example

Assumethat you have created a date/time variable named date1 that containsthe
following date/time data:

{ 1992 3 13 10 34 15.0000 87474.440 O}
{ 1983 4 20 12 30 19.0000 84224.521 O}
{ 1964 6 24 16 25 14.0000 77350.684 O}
To convert the datain this date/time variable:

DT TO_ VAR, datel, Year = years, $
Month = months, Day = days

; This procedure creates several variables containing the
; date/time data.

PRINT, ’'Years =', years

Years = 1992 1983 1964

; The keyword Year generates an integer array that contains
; the years.

PRINT, ’'Months =’, months

Writing Date/Time Data to a File 229

Months = 3 4 6

; The keyword Month creates a byte array with the months.
PRINT, '‘Days =’, days
Days = 13 20 24

; The keyword Day creates a byte array with the days of the month.

DT TO_SEC Function
This function converts date/time data into seconds. The function has the form:

result=DT_TO_SEC(dt_value)

Example

Assume that you have created the array dtarray that contains the following date/
time data:

{ 1992 4 15 7 29 19.0000 87507.312 0}

{ 1993 4 15 7 29 19.0000 87872.312 0}

{ 1994 4 15 7 29 19.0000 88237.312 0}

To find out the number of seconds for each date/time from January 1, 1970, usethe
DT_TO_SEC function:

seconds = DT TO SEC(dtarray, $
Base = '1-1-70’, Date Fmt = 1)
PRINT, seconds
7.0332296e+08 7.3485896e+08 7.6639496e+08

Miscellaneous Date/Time Utility Functions

PV=WAVE contains several utilities for generating and obtaining information
about date/time variables. For more information about each of these functions, see
the PV-WAVE Reference. These include:

- TODAY

« DAY_NAME

« DAY_OF WEEK
« MONTH_NAME
- DAY_OF YEAR
« DT_PRINT

230

PV-WAVE User’s Guide

The TODAY Function

Thisfunction returns adate/time variabl e containing the current date and time. The
form of the function is:

result = TODAY

Example

dttoday = TODAY ()
PRINT, dttoday
{ 1992 3 26 7 11 14.0000 87487.299 0}

The DAY _NAME Function

This function returns a string variable or array of string variables containing the
name(s) of the day(s) of the week of the date(s) in the input variable. The form of
thefunctionis:

result = DAY _NAME(dt_var)

Example

Assume that you have a date/time variable, date, for April 13, 1992. To find out
which day of the week this dateis, enter:

day = DAY NAME (date)
PRINT, day
Monday

The day names are accessed from the !|Day_Names system variable.

The DAY_OF_WEEK Function

This function returns the day(s) of the week expressed as an integer(s) for a date/
time variable. Day 0 is Sunday, 1 is Monday, etc. The syntax of the functioniis:

result = DAY_OF WEEK (dt_var)

Example

Assume that you have a date/time variable, date, for April 13, 1992. To find out
which day of the week this dateis, enter:

day = DAY OF WEEK (date)

PRINT, day

Miscellaneous Date/Time Utility Functions 231

1
; Itis a Monday.

The MONTH_NAME Function

This function returns a string or array of strings containing the month name of
dt_var, where dt_var is a date/time variable. The function has the form:

result = MONTH_NAME(dt_var)

Example

dttoday = TODAY ()
{ 1992 4 1 6 12 57.0000 87493.259 0}
; Create a variable that contains date/time data for today’s date.

m = MONTH_NAME (dttoday)
PRINT, m
April

; The month is April.

The month names are accessed from the system variable !Month_Names.

The DAY_OF_YEAR Function

Thisfunction returnsan integer or array of integers representing the day number of
the year for each date/time value. Day numbersfall in arange between 1 and 365
(or 366 for aleap year). The syntax of the function is:

result = DAY_OF_YEAR(dt_var)

Example

dttoday = TODAY ()
; Create a date/time variable.

daynumber = DAY OF YEAR (dttoday)
PRINT, daynumber
106

The DT_PRINT Procedure

This procedure takes the values in adate/time variable and prints these valuesin a
readable manner. The procedure has the form:

DT_PRINT, dt_var

232

PV-WAVE User’s Guide

dttoday= TODAY ()
DT_PRINT, dttoday
4/2/1992 7:7:51.0000

Miscellaneous Date/Time Utility Functions 233

234 PV-WAVE User’s Guide

Creating and Querying Tables

A tableisanatural and easily understood way of organizing datainto columnsand
rows. Many computer applications use the table model to organize large amounts
of data. For example, therelational database storesall of itsdatain atabular format.

The table functions |et you create tables and subset them in various ways. These
functions are both powerful and easy to use. Tables, which you create with the
BUILD_TABLE function, can be subsetted and manipulated with the
QUERY_TABLE function. QUERY _TABLE, which closely resembles the Struc-
tured Query Language (SQL) SELECT command, is an easy-to-learn and
conceptually natural way to access datain tables.

What are the Table Functions?

The table functions include:

BUILD_TABLE — Creates a new table from numeric or string vectors (one-
dimensional arrays) of equal length.

QUERY_TABLE — Letsyou subset, rearrange, group, and sort table data.
This function returns a new table containing the query results.

UNI QUE — Removes duplicate el ements from any vector (one-dimensional
array).

GROUP_BY — Performs summary (aggregate) functionsto groups of rows
in aPV-WAVE table variable.

ORDER_BY — Sortsthe rowsin a PV-WAVE table variable to create a new
table.

235

Table Functions and Structured Query Language (SQL)

The syntax of the QUERY _TABLE function closely resembles the Structured
Query Language (SQL) SELECT command. SQL is awidely-used language that
allows users to access the information in relational databases (databases that are
organized as tables). Many SQL statements resemble English sentences, and thus
SQL syntax isgenerally easy to learn and understand. Anybody familiar with SQL
will find the QUERY _TABLE function easy to understand and use.

A Quick Overview of the Table Functions

This quick overview isintended to give you afeel for the capabilities of the table
functions. Greater detail on all aspects of these functionsis provided throughout
the rest of this chapter.

Assume that a company-wide tel ephone system automatically collects data on var-
ious aspects of acompany’stelephone calls. The system collects the date and time
of each call, thecaler’sinitials, caller’ s extension number, area code of call, phone
number of call, call duration, and cost. Thisinformation is collected and stored in
adatafile.

After you read thisdatainto PV=WAVE, you can usethe BUILD_TABLE function
to create atable. Oncethetableis created, you can use QUERY _TABLE to subset
the data in various ways.

Here are some typical table queries using the QUERY _TABLE function. Assume
that the name of the table (which is specified when the table is created) is
phone_data. The namesof thetable's columns are just asthey appear in thefol-
lowing table. Don't worry now about the details of how the functionswork, similar
gueries are explained in detail later in this chapter.

DATE TIME DUR INIT EXT COST AREA NUMBER
901002 093200 21.40 TAC 311 5.78 215 2155554242
901002 094700 1.05 BWD 358 0.0 303 5553869
901002 094700 17.44 EBH 320 4.71 214 2145559893
901002 094800 16.23 TDW 289 0.0 303 5555836
901002 094800 1.31 RLD 248 .35 617 6175551999
901003 091500 2.53 DLH 332 .68 614 6145555553
901003 091600 2.33 JAT 000 0.0 303 555344

236

PV-WAVE User’s Guide

DATE TIME DUR INIT EXT COST AREA NUMBER

901003 091600 .35 CcCcw 418 .27 303 5555190
901003 091600 1.53 SRB 379 .41 212 2125556618
901004 094700 .80 JAT 000 0.0 303 555320
901004 094900 1.93 SRB 379 .52 818 8185552880
901004 095000 3.77 DJc 331 1.02 512 5125551228

Create a subset of the table that only shows the date, duration, and extension of
calls made.

tbl = QUERY TABLE (phone data, ’'DATE, DUR, EXT’)

Show me all of the calls made on October 2, 1990.

tbl = QUERY TABLE (phone data, ’'* Where DATE = 901002’)
Sort the table in descending order, by cost.

tbl = QUERY_ TABLE (phone_data, ’'* Order By COST Desc’)

Sort the table first in ascending order by date, then within each group of dates by
cost in descending order.

tbl = QUERY TABLE (phone data, ’'* Order By DATE, COST Desc’)
Show me the total cost incurred from each tel ephone extension on October 3.

tbl = QUERY TABLE (phone data, $
'EXT, Sum(COST) Where DATE = 901003,’ + $
'Group By EXT')

NOTE The second parameter in a QUERY _TABLE call is one string. The plus
sign (+) used above isthe string concatenation operator. It is used becauseit is not
legal otherwiseto break astring onto multiple lineswithin a PV=WAV E command.

For each extension, what was the average cost of out-of-state calls from October 3
to October 67

tbl = QUERY TABLE (phone data, $

"EXT, Avg(COST) ' + $
‘Where (DATE >= 901003 AND DATE <= ' + $
"901006) AND (AREA <> 303), Group By ' + $ "EXT’)

Show me the data on all of the calls that cost less than $5.00.

tbl = QUERY TABLE (phone data, ’'* Where COST < 5.0')

Show me the calls made by the caller with initials TAC.

A Quick Overview of the Table Functions 237

tbl = QUERY TABLE (phone data, ‘* Where INIT = "TAC"')

Show me the extension, date, and total duration of all calls made from each exten-
sion on each date.

tbl = QUERY TABLE (phone data, $
'EXT, DATE, Sum(DUR) Group By EXT, DATE’)

Creating a Table

To use the QUERY_TABLE function, you have to create atable first with the
BUILD_TABLE command. Tables are created from vectors (one-dimensional
variables) that contain the same number of elements. Each variable becomes, in
effect, acolumn in the table. Before you attempt to create a table, however, you
need to read your datainto a set of variables.

For detailed information on reading datainto PV=WAV E, see PV-WAV E Program-
mer’s Guide.

For information on creating a table that contains Date/Time data, see Using Date/
Time Data in Tables on page 251.

Once your dataisread into aset of equal-sized variables, usethe BUILD_TABLE
functionto build atable. Each variable becomes, in effect, aseparate columnin the
table. Once the variables are placed into atable, QUERY _TABLE can be used to

subset and manipulate the data.

TIP InPV=WAVE, atableisrepresented asan array of structures. You do not have
to understand or use structures to use the table functions. However, you may want
to review the chapter on structures, PV-WAV E Programmer’s Guide, before you
proceed to learn about the table functions. Also see the section Tables and Struc-
tures on page 256.

The table columns and the original input variables are separate. The original
variables are not removed when the table is created.

Example 1: Building a Table

Thefollowing example assumesthat you have defined eight variables and read data
into them. The datafor this example represents information collected from a com-
pany-wide telephone system. The variable names are: DATE, TIME, DUR, INIT,
EXT, COST, AREA, and NUMBER.

238

PV-WAVE User’s Guide

Thefollowing command builds an eight-column table from the tel ephone data vari-
ables. Note that BUILD_TABLE takes one parameter, a string containing the
names of the variables.

phone data = BUILD TABLE (’DATE, TIME, ' +$
'DUR, INIT, EXT, COST, AREA, NUMBER')

Theresultisanew table called phone data, whichisillustrated as follows.

DATE TIME DUR INIT EXT COST AREA NUMBER
901002 093200 21.40 TAC 311 5.78 215 2155554242
901002 094700 1.05 BWD 358 0.0 303 5553869
901002 094700 17.44 EBH 320 4.71 214 2145559893
901002 094800 16.23 TDW 289 0.0 303 5555836
901002 094800 1.31 RLD 248 .35 617 6175551999
901003 091500 2.53 DLH 332 .68 614 6145555553
901003 091600 2.33 JAT 000 0.0 303 555344
901003 091600 .35 CCw 418 .27 303 5555190
901003 091600 1.53 SRB 379 .41 212 2125556618
901004 094700 .80 JAT 000 0.0 303 555320
901004 094900 1.93 SRB 379 .52 818 8185552880
901004 095000 3.77 DJc 331 1.02 512 5125551228
901004 095100 .16 GWP 370 0.0 303 5551245

TIP You can format and print atable so that it appears approximately like the
above example. For information on printing table data, see Formatting and Print-
ing Tables on page 254.

Using INFO to View the Table Structure

You can use the INFO command to view the table structure. Tables are represented
as arrays of structures (for more information on this, see Tables and Structures on
page 256). Thus, the Structure keyword is used with the INFO command to obtain
information on tables, for example:

INFO, /Structure, phone data

** Structure TABLE 0, 8 tags, 40 length:

DATE LONG 901002

Creating a Table 239

TIME LONG 93200

DUR FLOAT 21.4000
INIT STRING " TAC'

EXT LONG 311

COST FLOAT 5.78000
AREA LONG 215

NUMBER STRING '2155554242"

Only Vectors can be Used in BUILD_TABLE

A tableis built from vector (one-dimensional array) variables only. You cannot
include expressionsin the BUILD_TABLE function. For example, the following
BUILD_TABLE call isnot allowed:

result = BUILD TABLE(’EXT(0:5), COST(0:5)")

However, you can achieve the desired results by performing the array subsetting
operations first, then using the resulting variablesin BUILD_TABLE. For
example:

EXT = EXT(0:5)
COST = COST(0:5)
result = BUILD TABLE (’'EXT, COST’)

In addition, you cannot include scalars or multidimensional-array variablesin
BUILD_TABLE.

Example 2: Building a Different Table with the Same Data

From any given set of equal-length variables, BUILD_TABLE can use all or some
of the variablesto build atable, and the table’'s columns can be placed in any order.

Thefollowing table contains just four columnsinstead of eight. Also, the columns
appear in adifferent order than in the previous example.

new_tbl = BUILD TABLE (’'DATE, EXT,DUR, COST')

Here is a portion of this new table:

DATE EXT DUR COST
901002 311 21.40 5.78
901002 358 1.05 0.0

901002 320 17.44 4.71

240

PV-WAVE User’s Guide

DATE EXT DUR COST

901002 289 16.23 0.0
901002 248 1.31 .35
901003 332 2.53 .68
901003 000 2.33 0.0

Example 3: Renaming Columns

By default, BUILD_TABLE usesthe original variable names as the names of the
table columns. You can rename columns by including the new name or “dias’
directly in the BUILD_TABLE command. Place the aliasimmediately after the
original variable name. For example, the previousnew_tb1 table can be created
with different column names:

rename_tbl = BUILD TABLE('DATE Call Date, '+$

"EXT Extension, DUR Call Length,’'+$
'COST Call_COSt’)

The resulting table isidentical to the table created in the previous section, except
for the column names. To see the structure of this new table, enter:

INFO, /structure, rename_ tbl

** Structure TABLE 0, 8 tags, 40 length:

CALL_DATE LONG 901002
EXTENSION LONG 311
CALL LENGTH FLOAT 21.4000
CALL_COST FLOAT 5.78000

Querying a Table

To query atable usually meansto subset the datain it. The QUERY _TABLE func-
tion returns a new table containing your query results, usually a subset of the
original table.

QUERY_TABLE letsyou:
* Rearrange atable and rename columns.
* Remove duplicate rows from atable.

Querying a Table 241

» Summarize related groups of datawith functionsthat add, average, count, and
perform other calculations.

e Sort columns of datainto ascending or descending order.

» Subset atableusing Boolean and relational operatorsto retrieve specific ranges
of data.

Restoring a Sample Table

Thephone data table described in this chapter is availablein asavefilein the
WAVE DATA directory. To restore thisfile, use the following RESTORE
command:

RESTORE, !Data Dir+’phone example.sav’

If you restore thisfile, you can practice using most of the commands described in
this chapter.

The QUERY_TABLE Function
The complete syntax (usage) of the QUERY _TABLE functionis:

result = QUERY_TABLE(table,

' [Distinct] * | col, [aliag] [, ..., cal, [aliag]]
[Where cond]

[Group By colg; [,... colg,]] |

[Order By colo, [direction][,..,colo, [direction]]] ')

Note that the second parameter is one long string and must be inclosed in quotes.

For a complete description of the function’s syntax, see the
PV-WAVE Reference.

Rearranging a Table

One of the simplest uses of QUERY _TABLE isto rearrange and/or rename the col -
umns of an existing table (atable aready created with the BUILD_TABLE
function). To create a new table from phone data containing only the phone
extensions, area code, and phone number of each call made, you could enter:

new_table = QUERY TABLE (phone data, ’EXT, AREA, NUMBER')

Hereisaportion of the resulting table:

242

PV-WAVE User’s Guide

EXT AREA NUMBER

311 215 2155554242
358 303 5553869
320 214 2145559893
289 303 5555836
248 617 6175551999
332 614 6145555553

TIP You can print or plot datafrom atable. For information on printing table data,
see Formatting and Printing Tables on page 254. For information on plotting table
data, see Plotting Table Data on page 255.

Renaming Columns
The following command is similar to the previous one, except that aliases
(Extension and Area Code) are used to rename two of the columns:

new table = QUERY TABLE (phone data, $
"EXT Extension, AREA Area_ Code, NUMBER’)
You can see that these new names are in effect with the INFO command:

INFO, /Structure, new_table
** Structure TABLE QT 2, 3 tags, 16 length:

EXTENSION LONG 311
AREA CODE LONG 215
NUMBER STRING 2155554242’

Using the Distinct Qualifier

The Distinct qualifier removes duplicate rows from the columns specified in the
QUERY _TABLE command. For example, the following command returns the
unique dates appearing in the table:

dates = QUERY TABLE (phone data, ’'Distinct DATE’)

The result is a one-column table containing the unigue dates on which data were
gathered. All duplicate dates have been filtered out of the result.

PRINT, dates
{901002} {901003} {901004}

Querying a Table 243

TIP The same basic result can be accomplished with the UNIQUE function,
described in the PV-WAVE Reference. UNIQUE returnsthe unique elements of any
one-dimensional array. When used to find unique elements of atable column, data-
structure notation must be used to specify the column (for more information, see
Tables and Structures on page 256). For example:

dates = UNIQUE (phone data.DATE)

Summarizing Data with Group By

The Group By clause sorts the table into rows grouped by common valuesin spec-
ified columns. Used with calculation functions, Group By lets you produce
summaries of data associated with each grouping. For example, you can find the
total cost of all calls made from each extension:

new_tbl = QUERY TABLE (phone_data, ’EXT, Sum(COST) Group By EXT’)
Or, you can find the number of calls made on each date:

new_tbl = QUERY_ TABLE (phone data, $

'DATE, Count (NUMBER) Group By DATE’)
Or, you can obtain the total duration from each extension on each date (amultiple
grouping):

tbl = QUERY TABLE (phone data, $
'EXT, DATE, Sum(DUR) Group By EXT, DATE’)

NOTE The GROUP_BY function performsthe same basic operation asthe Group
By clause of QUERY _TABLE, but with amore compact syntax. For detailed infor-
mation on GROUP_BY, see the PV-WAVE Reference.

Calculation Functions Used with Group By

Group By is aways used in conjunction with one or more calculation functions,
such as Sum and Count. These functions, shown in the following table, operate on
the lowest-level grouping to produce the desired resuilt.

Calculation Functions

Function Description Phone_Data Applications

Sum() Returnsthetotal of the total duration: SuUm(DUR)
valuesin the group. total cost: SUm(COST)

244

PV-WAVE User’s Guide

Calculation Functions (Continued)

Function Description Phone_Data Applications

Count() Returns the number of how many calls made:
items in the group. Count(NUMBER)

Min() Returnsthe smallest first date: Min(DATE)
element in the group.

Max() Returns the largest last day: Max(DATE)

element in the group.

Avg() Returns the average of average cost: Avg(COST)
the valuesin the group. average duration: Avg(DUR)

TIP These functions are described further in the description the
QUERY _TABLE function in the PV-WAVE Reference.

Using More than One Calculation Function

More than one calculation function can be placed in asingle QUERY _TABLE
command. For example, you can create atable showing the total cost and total
duration of calls made from each phone extension for the period of time the data
were collected.

cost_sum = QUERY TABLE (phone data, $
"EXT, Sum(COST), Sum(DUR) Group By EXT')

This produces the new table, called cost sum containing the columns EXT,
SUM_COST, and SUM_DUR. The cost and duration columns are renamed, by
default, with the prefix SUM_. This prevents confusion with the existing table col-
umnsthat are already named COST and DUR.

A portion of the resulting table is shown below. The valuesinthe SUM_COST and
SUM_DUR columns represent the total cost and total duration of calls made from
each extension.

EXT SUM_COST SUM_DUR
0 0.00000 4.49000
248 0.350000 1.31000
289 0.00000 16.2300
311 5.78000 21.4000
320 4.71000 17.4400

Querying a Table 245

EXT SUM_COST SUM_DUR

331 1.02000 3.77000

The INFO command shows the basic structure of this new table:

INFO, /structure, cost_sum

** Structure TABLE GB 2, 3 tags, 12 length:
EXT LONG O

SUM_COST FLOAT 0.370000

SUM_DUR FLOAT 592.140

TIP You could rename the columns in the previous command by adding an aias
after the column names. For example, Total Cost and Total Time are
aliases in the following function:

cost_sum = QUERY TABLE (phone data, $

"EXT, Sum(COST) TOTAL_COST, Sum(DUR) ’+$
'TOTAL TIME Group By EXT')

Multiple Groupings

Finally, you can specify more than one column in the Group By clause. For exam-
ple, you can obtain a grouping by extension and by date. The result isa*“group
within agroup”.

The following command produces such atable:

tbl = QUERY TABLE (phone data, $
'EXT, DATE, Sum(DUR) Group By EXT, DATE')

For more information on producing multiple groupings, see the description of
QUERY _TABLE in the PV-WAVE Reference.

Sorting Data with Order By

The Order By clauseis used to sort atable. Order By sorts columnsinto ascending
or descending order.

Suppose you want to rearrange the phone datatabl e so that it is sorted by extension,
in ascending order (ascending order isthe default). You can do thiswith the foll ow-
ing command:

ext sort = QUERY TABLE (phone data, ’'* Order By EXT')

246

PV-WAVE User’s Guide

The asterisk (*) before Order By isawildcard character that pulls all the columns
inphone data into the resulting table.

A portion of the resulting tableis shown below. Note that the EXT column is sorted
in ascending order.

NOTE The ORDER_BY function performsthe same basic operation as the Order
By clause of QUERY _TABLE, but with amore compact syntax. For detailed infor-
mation on ORDER_BY, see the PV-WAVE Reference.

DATE TIME DUR INIT EXT COST AREA NUMBER
901004 95300 1.36 JAT 0 0.00 303 480320
901004 94700 0.80 JAT 0 0.00 303 480320
901002 91600 2.33 JAT 0 0.00 303 480344
901002 94800 1.31 RLD 248 0.35 617 6174941999
901002 94800 16.2 TDW 289 0.00 303 2955836

Sorting in Descending Order

Use the Desc qualifier to sort a column in descending order. For example, the pre-
vious table can be further refined by sorting the coST field in descending order:

cost_sort = QUERY TABLE (phone data, $
"EXT, COST, DATE Order By EXT, COST Desc’)

This command produces a subsetted table with the coST column sorted in
descending order (as specified with the Desc qualifier) within each group of exten-
sions. The following tableillustrates part of the new table organization, where
extensions are sorted first, and then cost is sorted within each primary grouping of
extensions:

EXT COST DATE

370 0.12 901003
370 0.00 901004
379 0.52 901004
379 0.41 901003
418 0.27 901003

Querying a Table 247

Subsetting a Table with the Where Clause

To produce a subset of datain atable, use the QUERY _TABLE function in con-
junction with aWhere clause. A Where clause begins with the word Whereand is
followed by Boolean (AND, OR, NOT) and/or relational operators(<, >, <>, =, >=,
<=) that describe how the datais to be subsetted. See the PV-WAVE Reference for
more information on these operators.

You can use relational operators (EQ, GE, GT, LE, LT, and NE in aWhere clause
instead of the SQL -style operators listed above.

For example, to create asubset of thephone data tablethat only contains calls
made on one particular day:

new table = QUERY TABLE (phone data, ’'* Where DATE = 901002")

The asterisk (*) before Where isawildcard character that pulls all the columnsin
phone data into the resulting table.

Here is a portion of the resulting table—only rows with date 901002 are included:

DATE TIME DUR INIT EXT COST AREA NUMBER
901002 093200 21.40 TAC 311 5.78 215 2155554242
901002 094700 1.05 2 358 0.0 303 5553869
901002 094700 17.44 1 320 4.71 214 2145559893
901002 094800 16.23 2 289 0.0 303 5555836
901002 094800 1.31 1 248 .35 617 6175551999

To find the calls made on 901002 with aduration of greater than 10 minutes,
enter:

new table = QUERY TABLE (phone data, $
'* Where DATE = 901002 AND DUR > 10.0’")

The resulting subset isillustrated in the following table. All rows contain dates
90102 and durations greater than 10.0.

DATE TIME DUR INIT EXT COST AREA NUMBER
901002 093200 21.40 TAC 311 5.78 215 2155554242
901002 094700 17.44 EBH 320 4.71 214 2145559893
901002 094800 16.23 TDW 289 0.0 303 5555836

248

PV-WAVE User’s Guide

NOTE If you arefamiliar with SQL, you will seethat this Where clauseis similar
to the Where clause in the SQL SELECT command.

Using Strings in Where Clauses

The Where clause lets you filter stringsin a number of different ways. In the sim-
plest case, you want to find information related to a single string, such as a set of
initials. For example, to find the callsmade by the person with theinitial s TAC, you
can enter:

res = QUERY TABLE (phone data, $
'* Where INIT = "TAC" ')

Note that the string must be enclosed in quotes inside the function call. Also note
that double quotation marks are used to delimit TAC. Thisis because apostrophes
were used to delimit the entire QUERY _TABLE string parameter.

NOTE If thestring ispassed into the function asavariable parameter, as explained
in the section Passing Variable Parametersinto Table Functions on page 249, then
the quotes are unnecessary.

In amore complex case, you can use relational and Boolean operatorsto filter the
stringsin acolumn to find aparticular subset of strings. For example, thefollowing
command uses relational and Boolean operatorsto filter the INIT column, which
contains theinitials of callers:

res = QUERY TABLE (phone data, $
'+ Where (INIT >= "B") AND (INIT < "D") ')

The result of this query isanew table containing information on the calls made by
people whose initials begin with the letter B and C.

Passing Variable Parameters into Table Functions

Any string or numeric constant used in the QUERY _TABLE function can be
passed in as a variable parameter. This means that you can use variables for
numeric and string values that are used in the QUERY _TABLE function. For
example, you can create a string variable called name and useit in the
QUERY_TABLE function:

name = 'TAC’

tbl = QUERY TABLE (phone data, ’'* Where INIT = name’)

Querying a Table 249

Because name isavariable and not an actual string, you do not have to enclose it
in double quotes inside the function call.

The command shown in the previous section that finds the calls made on 901002
with aduration of greater than 10 minutes can also be written with variable param-
etersin place of actual values:

day = 901002
calldur = 10.0

new table = QUERY TABLE (phone data, $
'* Where DATE = day AND DUR > calldur’)

CAUTION If the variable name and the column name in a comparison are the
same, the result of the comparison simply returns “true” for all cases, and the
desired comparison may not be made. The following exampleis similar to the pre-
vious example, except the day variableis changed to date, whichisaso a
column name.

date = 901002
calldur = 10.0

new table = QUERY TABLE (phone data, $
' * Where DATE = date AND DUR > calldur’)

InthisQUERY _TABLE call, DATE = date returns“true” for all cases, rather
than only for cases where the date is 901002. The comparison DATE = 901002
is not made as might be expected. Thus, try to choose column names that are dif-
ferent from the variable names.

Using the In Operator

The In operator provides another means of filtering datain atable. This operator

tests for membership in aset (one-dimensional array) of values. For example, the
following array contains a subset of the initials found in the INIT column of the
phone data table:

nameset = ['TAC’, 'BWD’, '‘TDW’, 'RLD’]

The following QUERY _TABLE call produces a new table that contains informa-
tion only on the members of nameset:

res = QUERY_ TABLE (phone_data, ’'* Where INIT In nameset’)

250

PV-WAVE User’s Guide

Combining Multiple Clauses in a Query

You can place more than one clause in a QUERY _TABLE call to produce more
complicated and specific queries. Once you understand the basic parts of
QUERY_TABLE, combining these parts into more complex queriesis a straight-
forward process.

Within the QUERY _TABLE function, the Group By and Order By functions are
mutually exclusive. That is, you cannot place both Group By and Order By in the
same QUERY _TABLE call.

Example

The following command produces a table that:

* includes only callswith aduration of more than one minute.

e includesonly calswith an areacode not equal to 303 (out-of-state calls only).
» sortsthe table by phone extension, in ascending order.

» sortsthetable, within extension subgroups, by date in descending order.

» sortsthetable, within date subgroups, by duration in ascending order.

result = QUERY TABLE (phone data, $
'* Where (DUR > 1.0) And (AREA <> 303) '+ $
'Order By EXT, DATE Desc, DUR Desc’)

A portion of the table is shown below:

DATE TIME DUR INIT EXT COST AREA NUMBER

901002 094800 1.31 RLD 248 .35 617 6175551999
901002 093200 21.40 TAC 311 5.78 215 2155554242
901002 094700 17.44 EBH 320 4.71 214 2145559893
901004 095000 3.77 DJc 331 1.02 512 5125551228
901003 091500 2.53 DLH 332 .68 614 6145555553
901004 094900 1.93 SRB 379 .52 818 8185552880
901003 091600 1.53 SRB 379 .41 212 2125556618

Using Date/Time Data in Tables

In the previous examples, the DATE column contains long integer values that rep-
resent the dates of calls. Instead of using long integersto represent the dates, you

Using Date/Time Data in Tables 251

may be able to read the date data into a date/time variable. Once in the Date/Time
format, the dates can be converted to strings, placed in atable, and manipulated
with QUERY _TABLE. In addition, query results can be converted back into Date/
Time form and plotted on with a Date/Time axis.

Read the Date Data into a Date/Time Variable

Instead of reading the date data (901002, 901003, etc.) into along integer, read it
into an array of Date/Time variables. For detailed information on reading date data,
see Reading in Your Date/Time Data on page 206. This section contrasts the vari-
ous alternatives you have available for reading date/time data.

Two Methods of Handling Date/Time Data in Tables

Thissection discussestwo waysto handle Date/ Timedatain atable. It assumesthat
data has been read into a Date/Time variable. The first method discussed involves
converting the Date/Time variable to a string variable, which you can use to build
and subset atable. The second method involves manipulating the Date/Time data
directly as Julian day values.

Method 1: Convert the Date/Time Data to Strings

Convert the Date/Time variableto a String using the DT_TO_STR procedure. For
example:
DT _TO_STR, dtdata, dates, Date Fmt=5

This converts the Date/Time valuesinto strings of the format [YY]YY*MM*DD.
The advantage of thisformat isthat it allows dates to be compared directly as
strings. For example:

"1992-02-01"
precedes
"1993-03-02"
Subsetting the Table

Once you have created string variables from the original Date/Time data, you can
build a table using these string variables, and use the strings in query commands:

this date=QUERY TABLE (phone data, ’'* Where DATE = "1990-10-03"")

252

PV-WAVE User’s Guide

Plotting the Table with a Date/Time Axis

To plot thetable with aDate/Time axis, you haveto first convert the dates back into
Date/Time data. To do this, usethe STR_TO_DT function. For example:

PLOT, STR_TO DT (phone_data.DATES), phone_data.COST

Method 2: Create a Table that Includes the Date/Time Variable

This method deals directly with the Julian day part of the Date/Time structure.
Assuming that the Date/Time variable is called DATE, the following commands
create a new table containing three columns:

JDATE=DATE.Julian

; Create a new variable JDATE that contains the Julian date

; equivalents for each date. This is necessary because you cannot
; place a Date/Time structure directly in a table; tables must consist
; of vector (one-dimensional array) variables only.

new ph tbl = BUILD TABLE ("EXT, COST, JDATE")
; Create the table.

Subsetting the Table
Thefollowing query picksout al rowswhere DATE islessthan or equal to October
3, 1990:

TDate = VAR _TO DT(90,10,03)
END DATE = TDate.Julian

; Create a Date/Time variable called END_DATE, and set the
; variable equal to the Julian equivalent of October 3, 1990.

New_Table = QUERY_TABLE(new_ph_tbl, '*x where JDATE <= END_DATE’)
; Produce a subset of the table.

Plotting the Table with a Date/Time Axis

To plot the resulting table data with a Date/Time axis, the date data must be con-
verted back to a Date/Time variable. The following command performs the
conversion:

New Dates = JUL TO DT (new_ph tbl.JDATE)

When the datais plotted, PV=WAVE determinesthat New Dates isaDate/Time
variable, and plots a Date/Time axis automatically. For example:

PLOT, New Dates, new_ph tbl.COST
; Plots the dates on the x-axis and the cost on the y-axis.

For more information on plotting table data, see Plotting Table Data on page 255.

Using Date/Time Data in Tables 253

Formatting and Printing Tables

The simplest way to print atable is with the command:
PRINT, table name

Unfortunately, the output from such a statement is not formatted in areadable, pre-
sentable manner.

Printing the Table without Column Titles

To print thephone data table without column headings, simply enter:

WAVE> for i=0,N_ELEMENTS (phone_data)-1 do $
begin PRINT, phone data(i)

This prints areadable, neatly organized representation of the table. The PRINT
statement accesses each column of the table directly, using the basic structure nota-
tion, whichiis:

Variable Name.Tag_Name

For more information on the relationship between structures and tabl es, see Tables
and Structures on page 256.

Printing the Table with Column Titles

To achieve a presentable format with column titles requires a slightly more com-
plicated approach. For example, thefollowing procedure printsaformatted version
of thephone data tableto the screen and placestitles above each column. The
Format keyword in the PRINT statement uses FORTRAN-style format specifiers
to format the rows. For detailed information on format specifiers, seethe PV-WAVE
Reference. You can aso refer to the description of the PRINT function in the PV-
WAVE Reference.

PRO pr table, t name

PRINT, ' DATE TIME DUR INIT EXT '+ $
COST AREA NUMBER '

for i = 0, N_ELEMENTS(t name) - 1 do begin

PRINT, Format = '’ (I6, 1X, I6, 3X, F5.2, 3X, ' + $
"A3, 3X, I3, 2X, F5.2, 3X, I3, 3X, Al0)’, S
t_name (i) .DATE, t_name(i).TIME, $
t name (i) .DUR, t name (i) .INIT, $
t name (i) .EXT, t name (i) .COST, $
t name (i) .AREA, t name (i) .NUMBER

254

PV-WAVE User’s Guide

ENDFOR
END

After the procedureis compiled with .RUN, the following command prints the for-
matted phone table to the screen:

WAVE> pr_table, phone_data

DATE TIME DUR INIT EXT COST AREA NUMBER
901002 93200 21.40 TAC 311 5.78 215 2155554242
901002 94700 1.05 BWD 358 0.0 303 5553869
901002 94700 17.44 EBH 320 4.71 214 2145559893
901002 94800 16.23 TDW 289 0.0 303 5555836
901002 94800 1.31 RLD 248 0.35 617 6175551999
901003 91500 2.53 DLH 332 0.68 614 6145555553
901003 91600 2.33 JAT 000 0.0 303 555344
901003 91600 .35 CCw 418 0.27 303 5555190
901003 91600 1.53 SRB 379 0.41 212 2125556618
901003 91600 .45 MLK 370 0.12 212 2125557956
901004 94700 .80 JAT 000 0.0 303 555320
901004 94900 1.93 SRB 379 0.52 818 8185552880
901004 95000 3.77 DJc 331 1.02 512 5125551228
901004 95100 .16 GWP 370 0.0 303 5551245
901004 95300 1.36 JAT 000 0.0 303 555320

Plotting Table Data

You can plot table data easily using the plot procedures. For example, thefollowing
example plotsthe call duration vs. the cost. The PLOT statement accesses the col-
umns of the table directly, using the basic structure notation, which is:

Variable_Name.Tag Name

For more information on the relationship between structures and tabl es, see Tables
and Structures on page 256.

This command produces a scattergram that plots the call duration on the X axis
against the cost dlong the Y axis:

Plotting Table Data 255

PLOT, phone data.DUR, phone data.COST, $
Psym = 4, Title = ’'Duration vs. Cost’, $
XTitle = ’'Duration’, YTitle = ’Cost’

Duration vs. Cost
R

Cost
T
L

AN . . | | | L . . . |

0 5 10 15 20 25
Duration

Figure 9-1 Plot of data from a table.

Tables and Structures

As noted previously, atableis represented as an array of structures. Althoughitis
not necessary to understand or use structures to use table functions, this section
givesabrief overview of their relationship. For moreinformation on structures, see
in the PV-WAVE Programmer’s Guide.

The basic syntax of structuresis:

{Sructure_name, Tag_Name, : Tag_Def, , ...,
Tag_Name, : Tag_Def,, }

The simplest way to refer to afield in astructure is:
Variable Name.Tag_Name

When you create atable with BUILD_TABLE, the name of the table becomes the
Variable_Name, and the columns are Tag_Names for the underlying structure. The

256

PV-WAVE User’s Guide

actual name of the structure, Sructure_Name, is assigned by the system. You can
see this name when you list the tabl€e's structure with the INFO command. (In the
example shownin Using INFO to View the Table Structure on page 239, this name
ISTABLE_0.)

You could print the values of one column of phone data with the command:
PRINT, phone data.EXT

To print the first fifteen phone extensions, you could enter the command:
PRINT, phone data(0:14) .EXT

Column names must be expressed in structure notation when used in the UNIQUE
function. For example:

dates = UNIQUE (phone data.DATE)
The UNIQUE function is described in the PV-WAVE Reference.

Returning Indices of a Subsetted Table

In some situations you might want to build a table and associate index numbers
with each row in the result. These index numbers can be useful, particularly when
the result of a query generates a very large table that requires alarge amount of
memory to store. One way to save memory in such a situation isto create a query
statement that generates a result containing only the indices of the rows that you
are interested in. Then, a print statement allows you to print the rows of interest
without first storing them in avariable, which, in some cases, might betoo largeto
hold in memory along with the original table.

The following example demonstrates this technique. In this example, a new table
is built from phone data with an extracolumn called INDEX. This extra col-
umnissimply al1D array of integersin the range {0...14} created with the
INDGEN function.

INDEX = INDGEN (15)

Now, anew tableis created from the original table of telephone data, with INDEX
included as one of the table’'s columns.

newtbl = BUILD TABLE (phone data, ‘INDEX, EXT, DUR, COST')

Next, this new table can be subsetted with QUERY _TABLE so that the result con-
tainsonly theindices of the rowsinwhich you are interested. Because theresulting
table contains only the indices of the desired rows, much less memory isrequired
to store the result than if al of the datain the desired rows were stored.

Returning Indices of a Subsetted Table 257

result = QUERY TABLE (newtbl, ’INDEX Where COST > .50")

Finally, the following statements perform a more meaningful sort, where the indi-
cesstored in result are used to locate the desired rows in thenewtbl table.

FOR 1=0, N ELEMENTS (result) - 1 DO BEGIN S
PRINT, newtbl (result (i) .index)

NOTE This method of subsetting tables based on row indices does not work if a
Group By clauseisused in the QUERY _TABLE command. The reason for thisis
that Group By clausestypically return the results of calculations, and these results
usually have no counterpart in the original table.

Other Methods of Subsetting and Sorting Variables

PV=WAVE provides other functions for subsetting and sorting the values in one-
dimensional arrays. The SORT function sorts the subscripts of an array into
ascending order. For example:

array = [4, 3, 7, 1, 2]
index = SORT (array)

PRINT, index
3 4 1 0 2

Thisresults because: A; <A, <A; <A <A,. To seethe sorted array, enter:

PRINT, array (index)
1 2 3 4 7

The WHERE function allows the use of Boolean expressions to select ranges of
subscriptsin an array. For example:

index = WHERE ((array GT 50) AND (array LT 100))

result = array(index)

For more information on these functions, see the PV-WAVE Reference.

258 PV-WAVE User’s Guide

Using Fonts

PV=WAVE can produce text output using either software or hardware fonts. Soft-
ware fonts, sometimes called vector-drawn fonts or Hershey fonts, are internal to
PV=WAVE and are drawn with line vectors. Hardware fonts are built into specific
output devices, such as PostScript printersand window systems. PV=WAVE simply
sends the characters to the graphics device, which displays them using these
built-in fonts.

This chapter discusses how to work with both software and hardware fonts.

Software vs. Hardware Fonts: How to Choose

The following sections briefly discuss the things to consider when deciding
whether to use software or hardware fonts.

Appearance of Text

Software characters are of medium quality, suitable for most uses. The appearance
of hardware-generated characters varies from mediocre (such as the characters
found in somewindow systems) to publication quality (for example, PostScript and
Windows True Type fonts).

3D Transformations

Software and some hardware characters go through the same 3D transformations
astherest of the plot, yielding a better looking plot. Hardware font drivers that

259

support 3D transformations include X Windows, WIN32 (on Windows NT
platforms only), PostScript, and WMF.

Text Rotation

Both hardware and software fonts can be rotated. For exampl e, you can use the Ori-
entation keyword with the XYOUTS procedure to rotate atext string.

Portability of Text

The appearance and availability of hardware fonts varies greatly from device to
device, and thus are not be as portable as software fonts.

In general, the software fonts work the same way on any graphics device and ook
the same, within the limitations of deviceresolution. Thus, it is possibleto produce
graphics on one device and send it to another without worrying about character out-
put. Note, however, that software fonts are scaled relative to the size of the active

hardware font. Changing the size of the hardware font will rescale the size of the

software font.

UNIX and OpenVMS USERS You may notice that under X Windows the size
of the software fonts varies from device to device. When you start PV=WAVE, the
hardware font is set to the current hardware font of the X server. Not all X servers
will have the same default font size because users can reconfigure the default font
and the default font can differ between X servers. Therefore, you may discover that
the hardware font size, and therefore the software font size, may vary across differ-
ent workstations. You can avoid this by explicitly setting the X font using the
DEVICE procedure. For example:

DEVICE, font=’'-adobe-courier-medium-r-normal--14-*’

Speed of Plotting

It takes more computer time to draw characters with line vectors (software fonts),
and generally resultsin moreinput/output. Thisisnot an important issue, however,
unlessthe plot contains alarge number of characters or the transmission link to the
deviceisslow.

260

PV-WAVE User’s Guide

Localized Fonts

“Loca” fonts refer to fonts that contain characters that are required for a specific
language. For example, afont designed for French text contains charactersthat are
not found in an English text font.

The PV-WAV E software fonts contain a limited set of localized characters. If you
require characters outside this set (French characters, for example), then you must
use a suitable hardware font.

For information on adding alocal font to the set of available hardware fonts, see
Sring Resource File for Font Mappings on page 266.

Using Software Fonts

To use software fonts, you must set the value of the ! PFont system variable to —1.
Thisis the default setting. For example:

WAVE> !P.Font = -1

This section explains how to format software text and select different software
fonts.

You can embed formatting and font commands in the string arguments of plotting
keywords such as Title, SQubtitle, XTitle, and YTitle and in the string parameter of
the XYOUTS procedure.

Software Font Formatting Commands

You can accomplish awide variety of text formatting effects, such as subscripting,
superscripting, and equation formatting, by embedding formatting commands
directly in text strings. For example, the Title keyword definition:

Title = 'E = mc!U2’

produces the following title when plotted:

2
- — mc

This example usesthe ! U formatting command, which shiftsthe 2 up into a super-
script. More examples of text formatting appear later in this chapter.

The following table describes all of the available formatting commands.

Using Software Fonts 261

NOTE |If you bresk aline of text using !C, you may have to increase the !X and/
or 'Y margin fields to allow room for the extraline(s) of text.

Text Formatting Commands

Format Command Description

1A Shift above the division line.
IB Shift below the division line.
IC Create a multiple-line annotation. For example:

plot, x, y, title= %
'First Line!CSecond Line'

(See the Note above.)

1D Shift down to thefirst level subscript and
decrease the character size by afactor of 0.62.

IE Shift up to the exponent level and decrease the
character size by afactor of 0.44.

1T Shift down to the index level and decrease the
character size by afactor of 0.44.

'L Shift down to the second level subscript.
Decrease the character size by afactor of 0.62.

IN Shift back to the normal level and original char-
acter size.

IR Restore position. The current position is set

from the top of the saved positions stack.

1S Save position. The current position is saved on
the top of the saved positions stack.

U Shift to upper subscript level. Decrease the
character size by afactor of 0.62.

1l Print the ! symbol.

Changing Software Fonts

You can change software fonts by embedding afont selection command directly in
atext string. The default font is called Simplex Roman, and its font command ! 3.
Thefollowing statement changesthe font from the default to Complex Roman (!6):

Title = "16E = mc!U2’

This produces the following title when plotted:

262

PV-WAVE User’s Guide

z
b me

You can change the font anyplace in astring by embedding afont command where
you want the font change to occur. However, note that the selected font remainsin
effect until explicitly changed with another embedded font command.

NOTE Plat titles, subtitles, and axistitlesaredrawnin aparticular order. You need
to keep this order in mind when you mix the fonts used to annotate plots, because

subsequently drawn items “inherit” their font from previously drawn items. The
order is:

1. Main title

2. Subtitle

3. X axis numbers
4, X axistitle

5. Y axis numbers
6. Y axistitle

7. Z axis numbers
8. Z axistitle

TIP To achieve somekinds of font combinationsin asingle plot, you may need to
use the OPLOT procedure to overplot some of the text.

Thereare 17 different software fontsto choose from. They areillustratedin, inthe
PV-WAVE Reference.

More examples showing font selection appear later in this chapter. The following
table lists the font selection commands.

Font Selection Commands

Font Command Description

13 Simplex Roman (default)
14 Simplex Greek

15 Duplex Roman

16 Complex Roman

17 Complex Greek

'8 Complex Italic

Using Software Fonts 263

Font Selection Commands (Continued)

Font Command

Description

19 (IM)
110
111 (!G)
112 (W)
113
114
115
116
117
118
120

Math and special characters
Special characters

Gothic English

Simplex Script

Complex Script

Gothic Italian

Gothic German

Cyrillic

Triplex Roman

Triplex Italic

Miscellaneous

Using Hardware Fonts

To use hardware fonts, you must set the value of the |PFont system variableto 0

(zero). For example:

WAVE> !P.Font=0

NOTE By default, software fonts are enabled (!PFont is set to —1).

TIP If you want to use hardware fonts by default, add the statement ! P.Font=0 to

the PV-WAVE startup file.

Hardware Font Formatting Commands

In general, you can use hardware fontsin the same way you use softwarefonts. The
text formatting commands (for example, 'U) and font commands (for example, !3)
described and listed in the previous section can all be used with hardware fonts.

264

PV-WAVE User’s Guide

NOTE A string resource file is used to map software font commands to specific
hardware fonts. A resource file with default settingsis provided; however, you can
easily change these defaults. This resourcefile is described in detail in String
Resource File for Font Mappings on page 266.

Using PostScript Formatting Commands

NOTE The default PostScript fonts changed with PV-WAVE 6.21. The previous
default PostScript font was 12 point Helvetica. The new default PostScript font is
14 point Times Roman. You can change the default font by editing the file
fontmap ps, whichisdiscussed in String Resource File for Font Mappings on
page 266.

PV-WAVE provides a set of DEVICE procedure keywords that can be used to set
the default font for the PostScript driver. See the appendix called Output Devices
and Window Systems in the PV-WAVE Reference for alist of these DEVICE
keywords.

For example, to set the default PostScript font to boldface Helvetica, use the
commands.

SET PLOT, ’'ps’
DEVICE, /helvetica, /bold

Additional Text Formatting Commands

The following formatting commands for hardware fonts can be used with the
WIN32, WMF, X, and PostScript drivers:

Formatting

Command Description

'FB Switch to the bold face of the current font.

IFI Switch to theitalic face of the current font.
IFU Underline the current font.

IFN Switch to the normal form of the current font.
1Pxx Switch to point size xx of the current font,

where xx isatwo digit integer (01-99).

Using Hardware Fonts 265

String Resource File for Font Mappings

PV-WAVE provides a string resource file that lets you map PV-WAV E software
font commands to device-specific hardware fonts. This section explains the basic
format and location of thisfile.

Format of the Fontmap String Resource File

The string resource file used for font mapping consists of atab or space separated
list of font numbers and target fonts. For example, the first five lines of the default
fontmap file for the WIN32 driver are as follows:

3 Times New Roman, 14

4 Symbol, 14

5 Times New Roman, 14, Bold

6 Times New Roman, 14, Bold, Italic
7 Symbol, 14, Bold, Itaic

For example, if the output device is set to WIN32 and hardware fonts are selected
('PFont =— 1), then you can use the !5 command in atext string to produce Times
New Roman, 14 point, boldface text in your plot:

XYOUTS, x, y, '!5Carbon Dioxide Data’

Location of the Fontmap String Resource File

By default, the fontmap string resource files for each device arein:
(UNIX) <wavedir>/xres/!Lang/kernel

(OpenVMS) <wavedirs: [XRES. !Lang.KERNEL]

(Windows) <wavedirs\xres\ !Lang\kernel

Where <wavedir> isthe main PV-WAVE directory.

Files are named according to the convention: fontmap device. For example, the
fontmap file for the WIN32 deviceis:

fontmap win32

TIP If you changethe fontmap_x fileto add alocalized font, we recommend
that you makeasimilar changetothe fontmap ps file. Thereason for thisisthat
VDA Toolsassumethat the X Window and PostScript font number load equivalent
fonts.

266

PV-WAVE User’s Guide

Using the WAVE_FONTMAP_PATH Environment Variable

You can also use the environment variable WAVE_ FONTMAP_PATH to specify a
path of directoriesto search for the font map file.

Font map files are named by the following convention:

GETENV (’ WAVE_FONTMAP FILEBASE’) + /_device’

where device is one of the following supported devices.

Device Description

WIN32 WIN32 Driver

WMF Windows Metéfile Driver
X X Windows Driver

PS PostScript Driver

The default value of the variable WAVE FONTMAP FILEBASE is fontmap.
Thus, the default font mapping file for the WIN32 driver is:

<wavedirs\xres\ !Lang\kernel\fontmap win32

TIP Thevalueof WAVE_FONTMAP_ FILEBASE can bethenameof ahiddenfile.

Text Formatting Examples

The following sections demonstrate how to format text strings.

Example 1: Basic Text Formatting

This example demonstrates the effects of the text formatting commands, where | N
indicates the normal text level and the original character size. It displays the text
using the XYOUTS procedure. The following code produced the text shown in
Figure 10-1. In this example, the default font is used.

b = ’'!LLower !NNormal!S!UUp!R!DDown’ + $
" IN!S!AAbove!R!BBelow’

XYOUTS, .02, .2,b,size=3, /Normal

Text Formatting Examples 267

up Above
Normalg?
Lower DOWHB@]OW

Figure 10-1 Formatted text

Example 2: Changing the Position of Text

This example demonstrates further the use of formatting commands to change the
relative position of text. In thisexample, the font is changed from the default to the
Complex Roman font (16). The result is shown in Figure 10-2:

A = '"I6ILIILIS!E! !Exponent!R!I!!Index’ + $
PINIINISITHITIRIENIEIN' + $
"ISIUNIUISITIITIRIE!IEIRID!IDIS’ + $
"IEIIEIRITIITIN ISIANIAISIENIEIR!IIY + 8
"IITIR!B!IIBISIE!NIEIRIT!HITY

XYyouTs, .02, .5, A, Size = 5, /Normal

| w 'E
WTQﬁEELL? éfgfl
'I r*D‘E

. '
!L!Exponent : 0 W B
+ Hlndex @ T

Figure 10-2 Formatted text

Example 3: Multiple Fonts within a Single String

The third exampleillustrates the effects of changing the font, and illustrates how
complex mathematical symbols can be represented. The code used to produce each
lineisshowninthefigure. The Detailed Discussion section below explains specif-
icaly how the integral term shown at the bottom of Figure 10-3 was produced.

268

PV-WAVE User’s Guide

Frxamples

Do, A V. Howhoy

!wDr. A. V. Hershey

E=mc?® - = mc

!6E=mc!E2 !3E = mc!E2

X

o U; dx

IMI!SIAIE!8x!r!b!ip!N !7q!iiin!8U!S!IE2!r!ii!N dx

Figure 10-3 Changing text font and formatting mathematical expressions

Detailed Discussion

The bottom integral term shown in Figure 10-3 was formed by the procedure call:

XyouTrs, 0, .2,’!MI!SIA!E!8x!RI!B!Ip!N!7gq’ + $
"1T1IN!8UISIE2!IRITIi!N dx’,SIZE=3, /NORMAL

The formatting commands used to produce Figure 10-3 are summarized in the fol-
lowing table.

Formatting Commands Used in Example 3

Format Command Description

IMI Changesto math set and draws the integral
sign, uppercase .

1S Saves the current position on the position
stack.

IAIE!8x Shifts above the division line and to the expo-

nent level, switches to font 8 the Complex
Italic font, and draws the “x”.

Text Formatting Examples 269

Formatting Commands Used in Example 3 (Continued)

Format Command Description

IRIB!Ip Restores the position to the position immedi-
ately after the integral sign, shifts below the
division line to the index level and draws the

"o

IN! 7g Returns to the normal level, advances one
space, shiftsto the Complex Greek font
(number 7), and draws the greek letter “rho”
which isdesignated by “q” in this set.

IT1IN Shiftsto the index level and drawsthe“i” at
the index level. Returns to the normal level.
18U Shiftsto the Complex Italic set (number 8),
and outputs the uppercase “U”.
ISIE2 Saves the position and draws the exponent
13 2" i
IRIT1 Restores the position and draws the index “i”.
IN dx Returns to the normal level and outputs “dx”.

Example 4: Annotating a Plot
This example shows a 2D plot that uses formatted software characters for annota-
tion. The following statements were used to produce Figure 10-4.

X = FLTARR (128)

; Define an array.
X(30:40) = 1.

; Make a step function.
X = ABS(FFT(X,1))

; Take FFT and magnitude.

PLOT_OI, X(0:64), Xtitle = '!17Frequency’,$
Ytitle = ’'!5Power’, Title = $
' 118Example of Vector-Drawn Plot’, $
Position = [.2, .2, .9, .6]

; Produce a Log-Linear plot. Use the Triplex Roman font for

; the xtitle (117), Duplex Roman for the y title (!5), and Triplex
; Italic for the main title (118). The Position keyword is used to
; shrink the plotting “window”.

270

PV-WAVE User’s Guide

ss = '16F(s) = (2!4p)'!e-1/2!IN IMI!SIAIE!’ + $
'MIRIB!TIM!INF(x)e !e-i2!4p!3xs!n!MDx’
; String to produce equation.

XyouTs, 0.1, 0.75, ss, Size = 3, /Normal, /Noclip

; Output string over plot. The Noclip keyword is needed because
; the previous plot caused the clipping region to shrink.

F<S> — <2ﬂ>7W/2 —iZTVXS@X

INF(x)e
Example of Vector—Drawn Pf1ot

1210 . : 1

101 -

8F E
o [1
s 6L 3
H n]
o L 1

4 =

2F E

0—:1 =70 =8 =6 =7 = 0 :2

170 10 10 70 10 10 10 10

Frequency

Figure 10-4 Example of a plot drawn with software text

Text Formatting Examples 271

272 PV-WAVE User’s Guide

Using Color in Graphics Windows

There are numerous systems for measuring and specifying color; these systems
typically have three components. PV=WAV E accepts color specificationsin the
RGB, HLS, or HSV color systems.

Understanding Color Systems

A color systemisan agorithm for defining color. Color values are defined in the
specified color system and then used by the color table to control the colors on the
screen. Different systemsuse different combinations of valuesto describethe same
color.

Most devices capable of displaying color use the RGB (red, green, blue) color
system. Other common color systems include the Munséll, the HSV (Hue,
Saturation, Value), the HLS (Hue, Lightness, Saturation), and the CMY (Cyan,
Magenta, Yellow) color systems. Many agorithms have been written to convert
colorsfrom one system to another, and PV=WAV E hasthe conversion routines you
will need to successfully use color with graphics. From the command line or from
within a program or compiled procedure, you can use the COLOR_CONVERT
procedure to convert vector or scalar color table values from one system to another.

Color System Overview

The color systems available include:

* RGB — Red, Green, and Blue (the default)
e« HLS— Hue, Lightness, and Saturation

273

e HSV — Hue, Saturation, and Value

NOTE For either 8-hit or 24-hit color, RGB is the default color system.

For amore complete discussion of color systems, refer to either of these sources:

* Fundamentals of Interactive Computer Graphics, J.D. Foley and A. Van Dam,
Addison-Wesley Publishing Company, Reading, MA, 1982.

» Computer Graphics: Principlesand Practice, by Foley, Van Dam, Feiner, and
Hughes, Second Edition, Addison Wesley Publishing Company, Reading, MA,
1990.

Parts of this discussion are taken from these books.

The RGB Color System

The RGB color system uses athree-dimensional Cartesian coordinate system with
the value of each color ranging from 0 to 255. Each displayable color is a point
within this cube, as shown in Figure 11-1. The origin, (0, 0, 0), where each color
coordinate is 0, is black. The point at (255, 255, 255) iswhite and represents an
additive mixture of the full intensity of each of the three colors. Points aong the
main diagonal are shades of gray, because the intensity of each of the three prima-
riesisequal.

All primary and secondary colors are found on corners of the cube. For example,
refer to Figure 11-1, and notice that the color yellow is represented by the coordi-
nate (255, 255, 0), or amixture of 100% red plus 100% green plus 0% blue.

Cyan
(0,255,255)

Blue
(0,0,255),

White

Magenta (255,255,255)

(255, 0, 255)

— Green
— (0,255,0)

Black
(0,0,0)

Yellow
(255,255,0)

Red
(255, 0, 0)

274

PV-WAVE User’s Guide

Figure 11-1 RGB color cube. Primary and secondary colors are located at the corners of
the cube; grays are along the main diagonal. (After Foley and Van Dam).

How RGB Color Triples Map into Pixels

Typicaly, digital display devices represent each component of an RGB color coor-
dinate as an n-bit integer in the range of 0 to 2" — 1. Each displayable color isan
RGB coordinate triple of n-bit numbers— thisyields 23" total colors. For the com-
mon example of 8-bit colors, each color coordinate may range from O to 255, and
the number of color combinations to choose from would be 224 or 16,777,216
colors.

A display with an m-bit pixel can represent 2™ colors simultaneously, aslong asthe
display actually possesses that many pixels. For the increasingly common case
where the red, green, and blue components of the color are each represented with
an 8-bit value, 24-bit pixels are required to present as many colors on screen as
there are pixels.Eight bits per pixel permits the simultaneous display of 28 = 256
colors. selected from the much larger set of 224 colors.

Windows USERS You can run PV-WAVE on a 24-hit display; however,
PV=WAVE only uses 256 colors.

For amore thorough comparison of 8-bit and 24-bit displays, refer to the PV-WAVE
Reference.

If there are not enough bitsin apixel to represent al colors, or in other words, m<
23" acolor trandation table (also known as acolor lookup table or simply a color
table) is used to associate the value of apixel with acolor triple. Thistableisan
array of color tripleswith an element for each possible pixel value. Given 8-bit pix-
els, acolor table containing 28 = 256 elementsis required. The color table element
with an index of i specifies the color for pixels with avalue of i.

To summarize, given adisplay with an n-bit color representation and an m-bit pixel,
the color trandlation table, C, isa 2™ long array of RGB triples:

Ci={l’i,gi, bl},OS| < 2m
0<rjg,b<2n

Objects containing avalue, or color index, of i are displayed with acolor of C;.

Understanding Color Systems 275

The HSV and HLS Color Systems

TheHSV and HL S color systems can be represented as a color solid; HSV usesan
ordinary cone, while HL S uses a two-pointed cone. Any cross section through the
solid represents a particular color wheel, in which saturation increases radially
from the center. Asthe cross sections progress from the base of the cone to the top
point of the cone, the resulting color wheelsincrease in lightness.

NOTE In both the HLS and the HSV color systems, hue can vary through arange
of 0 degrees (red) to 120 degrees (green) to 240 degrees (blue) to 360 degrees (red).

The HLS Color System

The HLS system is based on the Ostwald color system, which uses hue, lightness,
and saturation values, as defined below:

* Hueisaterm used to distinguish between colors. It isusually represented asa
360-degree color wheel, with red at O degrees, green at 120 degrees and blue
at 240 degrees. Complementary colors are 180 degrees apart on the whesd!.

» Lightness corresponds to what is intuitively known as the brightness or inten-
sity of acolor.

e Saturation refersto how pure (or conversely, how diluted with white) a color
is. For example, saturation is what distinguishes lavender from purple, or sky
blue from royal blue.

In other words, with the HL S color system, each color index (color table color)
comprises values of hue, lightness, and saturation. Hue represents a gradation of
color ranging through all the colors. When you select a color in the color table and
changeitshue, you get adifferent color. Lightness definesthe color on ascalefrom
dark to light, with zero being black and 100 white.

Modifying the saturation produces colors that are more or less gray. A zero value
for saturation producesagray color, whileasaturation of 100 producesapure color
with no gray. Saturation has no effect at the extreme ends of the cone (i.e., when
lightness equals either O or 1).

The HSV Color System

HSV isbased on hue, saturation, and value e ements, as defined bel ow:

* Hueisaterm used to distinguish between colors. It isusually represented asa
360-degree color wheel, with red at O degrees, green at 120 degrees and blue
at 240 degrees. Complementary colors are 180 degrees apart on the whed!.

276

PV-WAVE User’s Guide

e Saturation refersto how pure (or conversely, how diluted with white) a color
is. For example, saturation iswhat distinguishes red from pink, or meadow
green from hunter green.

» Valuecorrespondsto what isintuitively known asthe brightness or intensity of
acolor.

In other words, with the HSV color system, each color index (color table color)
comprises values of hue, saturation, and value. Hue represents a gradation of color
ranging through all the colors. When you select a color in the color table and
changeits hue, you get adifferent color. Saturation represents arange of the color
from white (zero) through the fully saturated color (100). Value is arange from
black (zero) through the pure color (100).

Using Color to Enhance Visual Data Analysis

Colorisavauableaidin thevisual anaysis process, becauseit can be used to take
advantage of the human brain’s capability to distinguish fine gradations of shade
and intensity. Color can also be used to simply draw one’s attention to acertain part
of the screen, or to a certain region of aplot or image.

This section discusses:

v loading predefined and custom color tables

v/ modifying color tables to create special effects

v’ plotting colors used for the elements of “simple” plots

UNIX and OpenVMS USERS To use color, you must use aworkstation that is
capable of utilizing a display with color. However, no information islost if you
open a saved session on a monochrome or gray-scale workstation that was origi-
nally saved on a color workstation.

Experimenting with Different Color Tables

Most color workstations cannot display more than a certain number of colors (usu-
ally 256) at once. For thisreason, color tables are used to map red, green, and blue
valuesinto the available colors on the workstation.

PV=WAVE includes an assortment of 16 predefined color tables with enough vari-
ety to produce visually pleasing results for many applications, or you can define
your own color table.

Using Color to Enhance Visual Data Analysis 277

You can use either the TVLCT or the LOADCT proceduresto load the color table
on the current device:

 LOADCT — This procedure loads predefined color tables stored in the file
colors.tbl. Thisfileisin:
(UNIX) <wavedirs>/bin
(OpenVMS) <wavedirs>: [BIN]

(Windows) <wavedirs>\bin
Where <wavedir> isthe main PV=WAVE directory.

e TVLCT — Thisprocedure loads color tables stored in user-defined variables.
Oncethevariablesareloaded into the color table, it isused like any other color
table.

The color table functions let you modify the colors used to display images, shaded
surfaces, and vector graphicsinside graphicswindows. Vector graphics colors (also
called plot colors) let you control the colors assigned to elements of line plots, scat-
ter plots, contour plots, and unshaded surfaces. For more information on how to
manipulate plot colors, see Controlling Plot Colors on page 286.

For color and gray-scale devices, the default is to display 8-bit graphics using the
color table B-W Linear (standard color table number 0).

UNIX and OpenVMS USERS On amonochrome display, by default, color
graphics are dithered. For more information about dithering, see Displaying
Images on 24-bit Devices (UNIX/OpenVMS) on page 130.

Number of Colors in the Color Table Under UNIX/OpenVMS

Under UNIX and OpenVMS, the color table will alocate as many colorsasit can,
but the number of colorsit can actually useis affected by the type of system you
have and its configuration:

» Graphicsoutput to “simple’ graphicsdevices (for example, Tektronix ter-
minals or emulators) — The color table defines al 256 col ors, even though the
device can probably only uniquely display a much smaller number of colors,
such as 16, 32, or 64. Thedevicewill automatically begin to reuse colorswhen-
ever it reachesitslimit.

» Graphicsoutput in amulti-tasking windowing environment (for example,
the X Window System) — By default, the color table defines (and allocates)
every color that has not been previously allocated by the window manager or
some other application.

278

PV-WAVE User’s Guide

For more information about how to reserve colorsfor the window manager in an X
environment, refer to the PV-WAVE Reference.

Loading a Predefined Color Table: LOADCT

Use LOADCT toload one of the predefined color tables. There are 16 color tables,
ranging from 0to 15, inthefilecolors. tbl. Thisfileisin:

(UNIX) <wavedir>/bin

(OpenVMS) <wavedirs: [BIN]

(Windows) <wavedir>\bin

Where <wavedir> isthe main PV=WAVE directory.

The standard color tables are listed in the following table.

Standard Color Tables

No. Color Table Name No. Color Table Name

0 Black and White Linear 8 Green/White Linear

1 Blue/White 9 Green/White Exponential
2 Green/Red/Blue/White 10 Green/Pink

3 Red Temperature 11 Blue/Red

4 Blue/Green/Red/Yellow 12 16 Level

5 Standard Gammar || 13 16 Leve 11

6 Prism 14 Steps

7 Red/Purple 15 PV=WAVE Special

LOADCT has one parameter — the index of the predefined color table to be
loaded. For example, the following command loads the Red Temperature color
table:

LOADCT, 3

NOTE To obtain amenu listing of the available color tables, call LOADCT with
no parameters.

Using Color to Enhance Visual Data Analysis 279

Loading Your Own Color Tables: TVLCT

Use the TVLCT procedure to load a color table using data stored in variables.
When calling TVLCT, you supply three vectors containing theintensity or value of
each color (red, green, and blue) for each index. Given an n-bit color representa-
tion, each element must be in the range of 0to 2" — 1. These vectors may contain
up to 2™ elements, assuming the display contains m-bit pixels. You can also supply
an index pointing into the color tranglation table, but thisis optional. If not speci-
fied, avalue of Oisused, causing thetablesto beloaded starting at the first element
of the trandation table vectors.

TheTVLCT procedure can also use optional keyword parameters. For information
on the keywords, see the TVLCT description in the PV-WAVE Reference.

Example — Modifying Color Tables from the Command Line

The INDGEN function iswell-suited for creating larger color tablesin which each
color’sintensity can be expressed as afunction of itsindex. In this example, IND-
GEN isused to create alinear 256-element color table that is then used to display
images in a variety of ways:
A = INDGEN(256)

; Create a “straight line” variable, A(l)=I.

TVLCT, A, A*0, A*0

; Display image with a linear red scale; disable green and blue.
TVLCT, A, A, A

; Display image with linear black and white scale.
TVLCT, A, 2 * (A-128) > 64, 4 * (A-192) > 0

; Display image with a warm-body temperature scale. Red is linear
; (starting at 0), green starts at 128, and blue starts at 192.

Modifying the Color Tables

PV=WAV E provides many commands and widget-based utilities that you can use
to modify existing color tablesand to create new ones. Many of the possibilitiesare
described in the following sections.

The color table modifications discussed in this section only affect the contents of
PV=WAVE graphics windows. If you need to control the colors used in the back-
ground, foreground, and border of your window-managed GUI (graphical user
interface), you must use different techniques than those described in this section.
For moreinformation about selecting GUI colors, refer to Setting Colorsand Fonts
inthe.

280

PV-WAVE User’s Guide

Modifying the Predefined Color Tables

The MODIFY CT procedureis used to update thefile colors . tbl with anew
color table (i.e., anew named col or tablethat will take the place of one of the color
tablesin colors. tbl). Thisfileisin:

(UNIX) <wavedirs>/bin
(OpenVMS) <wavedirs>: [BIN]
(Windows) <wavedirs>\bin

Where <wavedirs> isthe main PV=WAVE directory.

This procedure should only be used by persons authorized to change the predefined
color tables supplied with PV=WAVE. In other words, you may need to contact
your System Administrator for assistance.

NOTE Except for editing colors. tbl directly, the MODIFYCT command is
the only way to modify the predefined standard color tables. For detailed informa:
tion about using the MODIFY CT command, refer to the MODIFY CT description
in the PV-WAVE Reference.

Modifying Color Tables Using Widget-based Utility Tools

PV=WAVE provides severa widget-based tools that you can use to interactively
modify the color tables.

* WgCeditTool — A full-featured set of menus and widgets enclosed in awin-
dow; thiswindow allows you to edit the values in PV=WAVE color tablesin
many different ways. WgCeditTool also providesaway to saveyour color table
changes using a name that you choose. The WgCeditTool window is shownin
Figure 11-2.

* WgCbarTool — A simple vertical or horizontal color bar that can be used to
interactively shift aPV=WAVE color table. WgCharTool can easily beincluded
inside larger container widgets. The WgCharTool window is shown in Figure
11-3 on page 283.

» WgCtTool — A simplewidget that can be used interactively to modify acolor
table. WgCtTool provides widgets that you can use to stretch, rotate, and
reverse the current color table. The WgCtTool window is shown in Figure 11-
4 on page 285.

WgCeditTool, WgCharTool, and WgCtTool can only be used if you are also run-
ning awindow manager. If you are an experienced programmer, consider providing
access to these widget-based utility tools viayour PV=WAVE application, so that

Using Color to Enhance Visual Data Analysis 281

people using your application can interactively modify and create new color tables
without entering commands at the WAV E> prompt.

Color Editor

Controls Edit ColorTables Options |

Color Hodel: B LINERR

0 15
AR
[Ly
Ly
Ly
Ly
Ly
[Ly
| [[]

Blue

Ramp Start:

Ramp End: 208 213

Fr___
Fr___
Fr___
Selected Colory Io_
[Er--
[Er--

Mezsages:

Click MBEl to select a color and to set Ramp Start,
Click MBZ to set Ramp End,

Mumber of available Colorsy 214

Figure 11-2 PV=WAVE provides several widget-based tools that you can use to interactively
modify the color tables. Here, the WgCeditTool window displays color table number 0, B-W
Linear. The WgCeditTool window lets you use the mouse to create a new color table based
on either the HLS, HSV, or RGB color systems.

Shifting the Color Table to the Left or Right

Shifting Color s from the PV=WAVE Prompt

This section discusses how the color table's red, green, and blue components can
be altered with the SHIFT function to produce amodified color table. Shifting the
color table in this manner produces the same basic effect as shifting it with
WgChbarTool, except you can precisely control the amount of shifting that occurs
and use different amounts of shifting for the red, green, and blue components. For
information about WgCbarTool, see the next section.

You can “shift” the color table to the left or right to change the color indices that
are associated with each color value. All the color table values are till present in
the color table, but the color table uses different colors for the start and the end.

282

PV-WAVE User’s Guide

TIP Following the same basic procedure, you can experiment with other functions
and procedures to produce different effects in the color table, such as producing a
nonlinearly interpolated color ramp.

To shift the color table, access the three color variables, as described in Retrieving
Information About the Current Color Table on page 285. Then process each of the
three variables (red, green, and blue) by shifting them some amount, such as:

shr = SHIFT(r curr, 28)
shg = SHIFT(g_curr, 56)
shb = SHIFT(b_curr, 84)

The amount of shifting can be any integer amount up to 236 (Windows) or 256
(UNIX/OpenVMYS) (if you are using all available colors). Remember that a shift of
zero (0) is equivalent to no shifting of the variable.

After the variables are processed, use them to load the current color table using the
TVLCT command.

Shifting Colors Using the Utility Widget WgChbar Tool

WgChbarTool creates asimple color bar that can be used to view and interactively
shift acolor table. The horizontal form of the color bar is shown in Figure 11-3.

To rotate the color table using the color bar, press and drag the left mouse button
insidethe color bar. Asyou “dide” colorsinto different color tableindices, the col-
orsthat “scroll off” the end of the color table are added to the opposite end.

Colorhar

0 213

Figure 11-3 WgCbarTool creates an array of colors that match the colors in the current color
table; the color array can be shifted to the right or left using the mouse. This color bar widget
has been created using the /Horizontal option; the default is for the color bar to be displayed
in a vertical orientation.

Using Color to Enhance Visual Data Analysis 283

Smoothing the Color Transitions in a Color Table

This section describes a technique for smoothing out any place in a color table
where there is a sharp transition from one color to the next color. This technique
involves the SMOOTH function.

Thistechnique helps a color table seem less harsh and hel ps reduce the banding or
“contouring” artifact evident in color tablesthat have rapid transitions between col -
ors. Otherwise, you may see an artificially pronounced transition in data that
actually has no rapid transitions.

To smooth the color table, access the three color variables, as described in Retriev-
ing Information About the Current Color Table on page 285. Then process each of
thethreevariables (red, green, and blue) by smoothing them by some amount, such
as.

smr = SMOOTH(r curr, 5)
smg = SMOOTH(g curr, 5)
smb = SMOOTH (b _curr, 5)

Initialy, start out with awidth of 5 (thisis the width of the “boxcar” smoothing
window), and adjust that width up or down as needed to get the most pleasing
results. Additionally, you may want to broaden the boxcar smoothing width if you
areusing all 256 (UNIX/OpenVMS) or 236 (Windows) colors.

After the variables are processed, use them to load the current color table using the
TVLCT command.

Stretching the Color Table

This section describes how to linearly expand arange within a color table to pro-
vide more detail for that range of pixel values.

Stretching Colors from the PV=WAVE Prompt

For example, the color table'sred, green, and blue components could be stretched
to emphasize a certain range of valuesin the image. To stretch al three compo-
nents, enter this command:

STRETCH, 15, 90

STRETCH linearly interpolates new red, green, and blue color vectors between the
low number and the high number. In other words, the low number (15) isthe pixel
value that is displayed with color index 0, and the high number (90) is the pixel
valuethat is displayed with the highest color index available. Pixel values between
15 and 90 are displayed proportionately, and pixels outside the range are displayed
with either the “low color” or the “high color”.

284

PV-WAVE User’s Guide

NOTE The STRETCH procedure does not affect the dataor the current color table
stored inthe Colors common block; it only affectsthe way the datais displayed.
For information about the Colors common block, see Retrieving Information
About the Current Color Table on page 285.

Stretching Colors Using the Utility Widget WgCtTool

WgCtTool allows you to interactively modify system color tables by stretching,
rotating, and reversing them. A range of color table indices, as defined by the
Stretch Bottom and Stretch Top sliders, can be linearly stretched.

The Stretch Bottom number is used for the first parameter to the STRETCH
command, and the Stretch Top number is subtracted from the number of colors
available in the color table to determine the second parameter to the STRETCH
command. For more information about the STRETCH command, refer to the pre-
vious section or to the description for STRETCH in the PV-WAVE Reference.

Color Table Tool

Drag left mouse button to rotate colortable

0 213

0 B-W LIMEAR
BLUE/WHITE
Stretch Bottom GRM-RED-BLL-LHT
RED TEMPERATURE
0 BLUE/GREEN/REDYELLOW
STD GAMMA-TI
Stretch Top PRISH

Dismiss Undo Reverse
Figure 11-4 The WgCtTool window lets you interactively modify system color tables by

stretching, rotating, and reversing them. The color bar in WgCtTool is the same one shown
separately in Figure 11-3.

NOTE Because system color tablesare “read-only”, no system color table will be
permanently altered by any changes you make with the WgCtTool window.

Retrieving Information About the Current Color Table

Most color table procedures maintain the current color table in acommon block
caled Colors, defined as follows:

COMMON Colors, r orig, g orig, b orig, r curr, g curr, b curr

Using Color to Enhance Visual Data Analysis 2895

The variables are integer vectors of length equal to the number of color indices.
Your program can access these variables by declaring the common block. The con-
vention is that routines that modify the current color table should read it from

r orig,g orig,andb orig, andthenload and leavetheresulting color table
inr_curr,g curr,andb_curr.

Controlling Plot Colors

The currently loaded color table determines plot colors (see the following discus-
sion entitled Default Plot Colors). Plot colorsare those col ors used to display data,
axes, axistitles, and other elements of line plots, scatter plots, contour plots, and

unshaded surfaces. But it is possible that the current color table (or any other stan-
dard color table) does not provide the colors you wish to usefor plotting your data.

For example, in many of the color tables, there are only subtle differences between
adjacent colorsin the middle range of the color table. This makes many of the stan-
dard color tables better suited for the display of imagesthan they arefor thedisplay
of datainside aline plot or bar chart.

To customize your plot colors, load new red, green, and blue color vectors defining
the colors you want. To load new color vectors, use the technique demonstrated in
the example in this section, or use the TVLCT procedure. The TVLCT procedure
is discussed in Loading Your Own Color Tables: TVLCT on page 280.

Another quick way to obtain anice set of plot colorsisusing the TEK_COLOR
procedure. The TEK_COLOR procedure is handy because it loads a color table
that mimics the 32 distinct plot colors of the Tektronix 4115 display device. The
TEK_COLOR procedureis discussed in Using the TEK_COLOR Command to
Control Plot Colors on page 289.

For moreinformation about the standard col or tables, refer to Loading a Predefined
Color Table: LOADCT on page 279.

Default Plot Colors

By default, when drawing vector graphics on the screen using the default color
table, Black and White Linear, PV=WAVE draws awhite line on a black back-
ground. However, you can use the Color keyword (with the PLOT command) to
choose any other available color. For example:

PLOT, x_data, y data, Color=144,

Unlessyou supply the Color keyword, color index 0 (often adark color) isused for
the background, and the highest color index (often alight color) is used for the
lines. Thismeansthat by default, alight color isused for plotting data, axes, titles,

286

PV-WAVE User’s Guide

and so forth. The highest color index is stored in asystem variable, |D.N_Colors.
For moreinformation about !D.N_Colors, see the section entitled Determining the
Number of Available Plot Colors on page 287.

NOTE Some hardcopy devices that print on white paper automatically swap the
foreground and background colors so that on paper, the lines are drawn with adark
color instead of alight color. Otherwise, the hardcopy would be drawn with white
on white, and the paper would appear blank. (Please be aware that some color out-
put devices do not adhere to this convention, although most monochrome output
devicesdo.)

Determining the Number of Available Plot Colors

Use the system variable !D.N_Colors to find out the number of simultaneously
available colors for a particular device. In the case of devices with windows, this
field of the device (!D) system variable is set after the window isinitialized.

NOTE For monochrome systems, !D.N_Colorsis 2, and for color systemsitis
normally 256. Under Windows, !D.N_Colorsis always 256.

If you are using PV=WAVE in a multi-tasking environment under the control of a
window manager, some color indices may bereserved for the window manager and
for other applicationsthat are running simultaneously with PV=WAVE, and thisin
turn will affect the value of D.N_Colors.

UNIX and OpenVMS USERS For more information about why colors are
reserved for the window manager in an X environment, refer to the PV-WAVE
Reference.

Using Color to Enhance Visual Data Analysis 287

LAVE 31

Figure 11-5 PV=WAVE provides sixteen standard color tables, and users can easily modify
these color tables or define their own. Here, the COLOR_PALETTE procedure is displaying
every other color in the current color table, along with its color table index. The black cells in
the upper-right corner of the window represent colors that are not available to PV=WAVE
because they have been reserved by some other application, such as the window manager.
The Motif version of the color palette is shown here.

TIP The COLOR_PALETTE procedure displays an array of color cells and the
color table index associated with each one, as shown in Figure 11-2. The largest
number you see displayed in the array of color cells reflects the current value of
ID.N_Caolors. For more information on this procedure, see the PV-WAVE
Reference.

Example — Creating a Simple Color Table to Control Plot Colors

This example creates a graph with the axes drawn in white (on a black back-
ground), then successively adds red, green, blue, and yellow lines. Because five
distinct colors are needed, plus one color for the background, a six-element color

288

PV-WAVE User’s Guide

tableis created. In this color table, color index O represents black (0, 0, 0), color
index Liswhite (4, 1, 1), 2isred (1, 0, 0), 3isgreen (0, 1, 0), 4isblue (0, O, 1),
and 5isyelow (1, 1, 0).

red = [0,1,1,0,0,1]

; Specify the red component of each color (1 = full intensity, 0 = no intensity)...
green = [0,1,0,1,0,1]

; ... green component.
blue = [0,1,0,0,1,0]

; ... blue component.

TVLCT, 255*red, 255*green, 255*blue
; With a single command, multiply each element in the red, green,
: and blue vectors, and load the first six elements of the color table.
; The remaining colors in the color table are not affected.

PLOT, Color = 1, /Nodata, ..
; Draw the axes in white, color index 1.

OPLOT, Color = 2,
; Draw in red.
OPLOT, Color = 3,

; Draw in green.
OPLOT, Color = 4,
; Draw in blue.

OPLOT, Color = 5,
; Draw in yellow.

NOTE For this example to work on your display, your display must have at least
three bits per pixel so it can simultaneously represent six colors. An 8-bit color
tableis assumed.

Using the TEK_COLOR Command to Control Plot Colors

Another easy way to changethe colorsin thelower end of the color tableisto enter
the TEK_COL OR command; this command loads 32 predefined, unique, highly
saturated colors into the bottom 32 indices of the color table. When the
TEK_COLOR color tableisin effect, youwill beableto easily differentiate the dif-
ferent data setsin aline plot.

Using Color to Enhance Visual Data Analysis 289

Example

The TEK_COLOR procedure has no keywords or parameters, soitissimpleto use.
This example shows how the TEK _COLOR colors can be used to produce bright,
vibrant fill colors.

b FINDGEN (37)
x = b * 10
y = SIN(x * !Dtor)
; Create an array containing the values for a sine function from 0 to 360 degrees.
PLOT, x, y, XRange = [0,360], XStyle=1l, YStyle=1
; Plot data and set the range to be exactly 0 to 360.
COLOR_PALETTE
; Display of the current color table and its associated color indices.
TEK_COLOR
; Load a predefined color table that contains 32 distinct colors.
POLYFILL, x, y, Color = 6
POLYFILL, x, y/2, Color = 3
POLYFILL, x, y/6, Color = 4
; Fill in areas under the curve with different colors.
z = COS(x * !Dtor)
; Create an array containing the values for a COS function from 0 to 360 degrees.
OPLOT, X, z/8, Linestyle = 2, Color = 5
; Plot the cosine data on top of the sine data.

NOTE The color table indices specified with the Color keyword must bein the
range{0 ... 31} totake advantage of the bright colors created by the TEK_COLOR
procedure. Color tableindices above 31 are not affected by the TEK_COLOR pro-
cedure, and will remain as defined by the previously loaded color table.

Specifying Plot Colors on a 24-bit Display (UNIX/OpenVMS)

For your convenience, PV=WAVE allows 24-bit colors to be specified in hexadec-
imal notation. You may want to enter hexadecimal colorsif you are controlling plot
colors on a 24-hit display. Because thisis most frequently done while operating
under the control of awindow manager in an X Window System environment, refer
to the PV-WAVE Reference for more details.

290

PV-WAVE User’s Guide

Device-specific Methods for Using Color

Usethe SET_PLOT procedure to direct the graphics output to different devices. A
scalar string you provide with the command i dentifi es the device to which you wish
to send graphics output.

Color Tables — Switching Between Devices

Because devices have differing capabilities, and not all are capabl e of representing
the same number of colors, the treatment of color tables when switching devicesis
somewhat tricky. See the PV-WAVE Reference for detail s on each supported device.

After selecting a new graphics output device, SET_PLOT will perform one of the

following color table actions depending upon which keyword parameters are

specified:

* Do nothing — Thisisthe default action. The problem with this treatment is
that PV=WAVE's internal color table incorrectly reflects the state of the
device's color table until TVLCT is called.

» Copythedevicecolor table— If the Copy keyword parameter is set, theinter-
nal color tableis copied into the device. Thisisthe preferred method if you are
displaying graphics and each color index is explicitly loaded.

The color table copying is straightforward if both devices have the same num-
ber of color indices. If the new device has more colors than the old device,
some color indices will be invalid. If the new device has less colors than the
old, not al the colors are saved.

NOTE When the Interpolate keyword is set, the new device color tableisloaded
by interpolating the old color table to span the new number of color indices. This
method works best when displaying images with continuous color ranges.

Combining Colors to Create Special Effects

You can usethewrite mask to specify one or more color planeswhose bitsyou wish
to manipulate or the plane you want to use to create the special effects. The way
the special effects are rendered a so depends on the value you provide for the
graphics function. For more details, refer to the PV-WAVE Reference.

The write mask is used to control how one graphics pattern interacts with another
graphics pattern when plotting to a graphics window. The write mask allows you
to create special effects when overlaying or superimposing images and patterns.

Device-specific Methods for Using Color 291

UNIX and OpenVMS USERS For example, some 24-bit displays allow the
screen to be treated as two separate 12-bit images. This allows for “double-buffer-
ing”, atechnique useful for animation, or for storing distance datato simplify
hidden line and plane calculations in 3D applications.

Another possible application for the write mask isto simultaneously manage two
4-bit-deep imagesin asingle graphicswindow instead of asingle 8-hit-deep image.
You could use the write mask to control whether the current graphics operation
operates on the “top” image or the “bottom” image.

Summary of Color Table Procedures

The Standard Library procedureslisted in this section are used to manipulate color
tables. Some of the procedures are basi ¢ proceduresthat you use programmatically
to change color tables, and others are window-based procedures that facilitate
interactive modifications. For detailed information on any of these routines, seethe
PV-WAVE Reference.

Basic Color Table Procedures

These commands can always be entered at the WAVE > prompt:

e COLOR_CONVERT — This procedure converts vector or scalar color table
valuesfrom one color systemto another. The supported color systemsare HSV,
HLS, and RGB.

e« HIST_EQUAL_CT — This procedure uses an input image parameter, or the
region of the display you mark, to obtain a pixel distribution histogram. The
cumulative integral istaken and scaled, and the result is applied to the current
color table.

* HLS— Thisprocedure makes and |loads color tables based on the HL S color
system. This system is based on the Ostwald color system. As with the HSV
procedure, spirals are interpolated in athree-dimensional color space.

* HSV — This procedure makes and loads color tables based on the HSV color
system. A spiral through the single-ended HSV coneistraced. The color rep-
resentation of pixel valuesislinearly interpolated from beginning and ending
values of hue, saturation, and value.

* LOADCT — This procedure |oads predefined color tables. To obtain amenu
listing of the available color tables, call LOADCT with no parameters.

292

PV-WAVE User’s Guide

MODIFYCT — This procedure is used to update the file

(colors. tbl) that liststhe system color tables. This procedure should only
be used by persons authorized to change the predefined color tables supplied
with PV=WAVE.

PSEUDO — This procedure generates and loads a pseudo color table based
onthe HLS color system. The colorsit generates are theoretically “anear max-
imal entropy mapping” for the eye. The parameters are similar to those used
with the HLS and HSV procedures.

STRETCH — This procedure linearly expands the entire range of the last
color table loaded by a PV=WAVE procedure to cover a given range of pixel
values.

TEK_COLOR — This procedure loads a color table that mimics the 32 dis-
tinct plot colors of the Tektronix 4115 display device. These colors ensure that
the various datasets in aline plot or bar chart are easy to differentiate.

TVLCT — This procedure loads color tables stored in variables. Once the
variables are loaded into the color table, it is used like any other color table.

Interactive Color Table Procedures

The procedureslisted in this section create windows of varying complexity that can
be used to interactively make modificationsto color tables.

Interactive (Wave Widgets) Color Table Procedures

The procedures listed in this section are WAV E Widgets applications, and thus are
available using the Motif |ook-and-feel. For more information on WAV E Widgets,
refer to the PV-WAVE Application Developer’s Guide.

WgCbar Tool — This procedure creates asimple color bar that can be used to
view and interactively shift a color table.

WgCeditTool — This procedure creates a full-featured set of menus and wid-
gets enclosed in awindow; this window allows you to edit the valuesin color
tables in many different ways.

WgCtTool — This procedure creates asimple widget that can be used interac-
tively to modify acolor table.

NOTE Thewindow-oriented procedureslisted in this section will not work unless
you are using an X -compatible window manager, such asMotif. All proceduresare

Summary of Color Table Procedures 293

written in the PV=WAV E language and they all use the TVLCT procedure to load
the color tables.

Interactive (Generic) Color Table Procedures

The procedures listed below create windows that have a“ generic” look-and-feel:

C_EDIT — This procedure allows the interactive creation of color tables
based on the HLS or HSV color system. C_EDIT is similar to the
COLOR_EDIT procedure, except that this implementation provides better
control of HSV colors near zero percent saturation.

COLOR_EDIT — This procedure creates col or tablesinteractively using the
HLS or the HSV color system. A temporary window is created containing a
color wheel and barsfor intensity and pixel value. The mouseis used to select
the three color parameters and the corresponding pixel value. Color values are
interpolated between selected pixel values. Graphs showing the three color
parameters as afunction of value are displayed in the right half of the window.

COLOR_PALETTE — This procedure displays the current color table in a
separate window with color indices overwritten on the display. Thisisahandy
procedure for finding out what color in the current color table is associated
with a particular color index.

PALETTE — This procedure displays an interactive window that letsyou cre-
ate color tableswith RGB dlider bars and allows good selection and control of
each color index. It caninterpolatein RGB space between color indices or edit
asingle color index.

NOTE All procedures are written in the PV=WAVE language and they all usethe
TVLCT procedure to load the color tables.

Windows USERS Some of theseroutines, suchasC_EDIT and COLOR_EDIT,
are written to be used with a three-button mouse. If you are using a two-button
mouse, you can use the <Alt> key in combination with the left mouse button to
simulate a middle mouse button.

294

PV-WAVE User’s Guide

Mapping with PV-WAVE

The PV=WAV E mapping procedures let you create a variety of mapping applica
tions. Scientific data, economic data, aerial photography data, and other kinds of
data can be plotted with maps generated by PV=WAVE.

Figure 12-1 The data points plotted on this map of the United States represent lightning
strikes recorded by remote sensors.

This chapter discusses how to use the PV=WAV E mapping procedures, and
includes the following topics:

e Introduction
» Using Map Projections and Datasets

295

» Creating and Customizing Maps

* How to Optimize Your Mapping Application
* Accessing Other Map Datasets

» Defining Your Own Projections

» Creating Interactive Map Applications

Introduction

Typical uses for the PV=WAV E mapping procedures include:

» Scientific applicationswhere wide-areadatais plotted with coastline and polit-
ical boundaries.

» Business applications where geographic datais displayed and highlighted to
reflect a measured quantity.

» Military, environmental, and remote sensing applications where satellite imag-
ery and digitized aerial photography are integrated with maps.

The mapping procedures, map datasets, and demonstration files are located in the

PV=WAV E mapping directory:

(UNIX) $VNI_DIR/mapping-1 1

(OpenVMS) VNI DIR: [MAPPING-1 1]

(Windows) %VNI DIR%\mapping-1_1

Where VNI_DIR isthemain Visua Numericsinstallation directory.

The PV=WAV E mapping procedures can be adapted easily to work with your own
projections and map datasets. The mapping procedures include:

« MAP — Plots map data with a specified projection.

* MAP_CONTOUR — Plots contours on amap.

« MAP_PLOTS— Plots vectors or points on the current map projection.
* MAP_POLYFILL — Fills specified regions of a map.

« MAP_REVERSE — Converts X-Y coordinate datato longitude and latitude
coordinates.

* MAP_VELOVECT — Plots atwo-dimensional vector field on a map.
* MAP_XYOUTS— Adds text to amap.

* USGS NAMES— Queries a database of longitude/latitude coordinates for
states, counties, cities, and towns in the United States.

296

PV-WAVE User’s Guide

Using Map Projections and Datasets

Thissectionisnot intended to teach mapping concepts, but rather to highlight some
of the concepts that are central to using the PV=WAV E mapping routines.

For more information on mapping projections and in-depth discussions of algo-
rithms and uses of the projections PV=WAV E generates, refer to the following
publications:

Map Projections Used by the U.S. Geological Survey, Geological Survey
Bulletin 1532, John P. Snyder, Second Edition, 1983.

An Albumof Map Projections, U.S. Geological Survey Professional Papers
1453, John P. Snyder and Philip M. Voxland, 1989.

Both are available from:

USGS ESIC: Open File Report Sales
Box 25286, Building 810

Denver Federa Center

Denver, CO USA 80225

Phone: (303) 236-7476

FAX: (303) 236-4031

What Are Map Projections?

A central problem facing cartographers for centuries was how to represent the fea-
tures of aspherical globe on aflat map. Many methods have been devised for
“flattening” the globe onto a map, and these methods are called map projections.
PV=WAV E can generate 17 different types of projections. It isalso possiblefor you
to design your own algorithms and use them in PV=WAVE.

A map projection transforms spherical coordinates into two-dimensional X-Y
coordinates. The spherical coordinates of the globe are defined by lines of longi-
tude and | atitude.

Longitude isthe angle in degrees east or west of the prime meridian passing
through Greenwich, England, and latitude is the anglein degrees north or south of
the Equator.

Using Map Projections and Datasets 297

Types of Projections

Each different map projection preserves different characteristics of the globeit rep-
resents. The characteristics preserved by four important projection types are
described below:

» Equal Area Projection — Preserves the relative area of features at the
expense of distortions in shape, angles, and scale. In an equal area projection,
acoin placed on any part of the map will cover the same area.

» Conformal Projection — Preserves the shape of small features correctly, but
large feature are distorted. Most large scale maps use some type of conformal
projection.

» Equidistant Projection — Preserves the scale or measured distance between
certain pointsand all other points on the map. This allows true distancesto be
measured using aruler.

* Azimuthal Projection — Preserves|ocal direction, or the angle between one
point and other points on the map.

Projections can exhibit one or more of the above properties, thus there are azi-
muthal equidistant and azimuthal equal-area projections. There are subclasses of
these projections which preserve more specialized characteristics. On Mercator
projectionsall rhumb lines (lines of constant direction) are shown as straight lines,
and on Stereographic projections all small circles (e.g. lines of latitude) and great
circles (intersection of a plane passing through the center of the sphere and the sur-
face of the sphere) are shown as circles on the map.

In order to achieve some of the above properties, map projections are usually con-
structed in such away that the surface of asphereis*projected” or mapped to either
acylinder, cone, or plane (referred to as azimuthal). Thus the projection may refer
to “Conic”, “Cylindrical”, or “Azimuthal” in its name to identify the construction
method.

Map Projections Available in PV-WAVE
PV=WAVE can generate the following map projections:
* Equidistant Cylindrical

* Lambert Conformal Conic

e Cylindrical Mercator

* Sinusoidal
* Albers Equal-Area Conic
« Polyconic

» Polar Stereographic

298

PV-WAVE User’s Guide

» Oblique Stereographic

* Oblique Orthographical

» Polar Orthographical

» Oblique Azimuthal Equidistant Oblique
* Polar Azimuthal Equidistant Oblique
» Polar Azimuthal Equal-Area

e Oblique Azimuthal Equal-Area

* Transverse Mercator

* Mollweide (Ellipsoid)

» Satellite (3D mapping onto a sphere)
» User-defined projection

What Are Map Datasets?

In PV=WAVE amap dataset is a set of polylines (a series of connected points) or
polygons (points which describe afilled area). These polylines or polygons can
have a number of classification attributes associated with them which aid in
selecting features to be plotted. These attributes allow the desired polylines or
polygons for amap to be selected based on the area being mapped and the features
you want to plot.

Two datasets are included with PV=WAVE for creating world and US maps: The
World Databank 11 dataset for global maps, and a dataset based on the USGS
Digital Line Graph datafor U.S. maps. In addition, a USGS database of U.S. map
information isincluded with PV=WAVE.

The World Databank Il Dataset

World Databank 11 is the default dataset used by the PV=WAVE MAP procedure.
The World Databank 11 dataset is a subset of a public domain dataset provided by
the U.S. Department of Commerce, merged with updated country data from the
National Imagery and Mapping Agency (NIMA). All of the attribute information
from the original dataset is provided in PV=WAVE, but the resolution has been
reduced by sampling the polylinesin order to make the dataset manageable both in
terms of disk space and memory requirements.

The subsetted dataset contains approximately 300,000 points, which providesgood
resolution for most applications. The dataset consists of a series of polylines, and
each polyline has attributes associated with it. You can subset a map by specifying
these attributes with the Select keyword (to the MAP procedure). The attributes
include coastlines/islands/lakes, rivers, international boundaries, and U.S. state
boundaries.

Using Map Projections and Datasets 299

The USGS Digital Line Graph Dataset

The USGS Digital Line Graph Dataset is composed of polygons that draw U.S.
states and counties. The polygons allow you to create either line maps or maps
filled with color. The Select keyword (to the M AP procedure) lets you plot specific
states and counties. This dataset can be selected by using the keyword Data =
"usgs_db’ with the MAP procedure.

The USGS Name Database

TheUSGS_NAMES function queries abuilt-in database of popul ated placesin the
United States. This database lets you find the longitude and latitude and for most

citiesand townsin the U.S. In addition, you can use the database to determine the
FIPS codesfor states and counties. See the PV-WAVE Reference for details on this
procedure.

Reading Other Map Datasets Into PV-WAVE

The World Databank |1 and USGS Digital Line Graph datasets are provided with
PV=WAVE, as are procedures used to read them into PV=WAVE. To read another
dataset other than World Databank |1 and USGS Digital Line Graph Dataset, you
must write a procedure tailored to read that dataset. For more information, see
Accessing Other Map Datasets on page 315.

Creating and Customizing Maps

This section explains how to create maps in PV=WAVE using the MAP procedure
and its keywords. In addition, procedures for annotating maps, creating map over-
lays, and combining maps and images are discussed.

Plotting a World Map

The MAP procedure, by default, displays aworld coastline map taken from the
World Databank |11 dataset.

For example, the following MAP call produces the map shown in Figure 12-2.

TEK_COLOR

MAP, Range = [-180, -90, 180, 90], s
Select = {,GROUP:[’cil’,’bdy’,’pby’,$
'riv’']}, Color = -1, /Gridlines, $

Gridstyle = 1, Gridcolor = 15

300

PV-WAVE User’s Guide

Figure 12-2 An equidistant cylindrical projection plotted from World Databank Il data.
Coastlines, islands, lakes, political boundaries, and rivers are plotted, as well as longitude/
latitude gridlines.

In this example, keywords are used to specify the range of data, select the map fea-
turesto plot, create longitude/latitude gridlines, and add color. MAP accepts some
additional optional keywords. Some of the keywords are discussed inthefollowing
sections. For acompl etelist and description of the keywords, see the description of
MAP in the PV-WAVE Reference.

The Data keyword is used to specify the map dataset to plot. The World Databank
Il dataset (the default) and the USGS Digital Line Graph Dataset are provided with
PV=WAVE. You can also write custom procedures to read other map datasets. For
example:
MAP, Data = ’'usgs _db’, Range = $
[-125, 25,-70,55], /Gridlines, /Axes, Gridstyle = 2
; Plots a U.S. map using data from the USGS Digital Line
; Graph Dataset. The Range keyword is used to specify the
; map region in longitude/latitude coordinates.
MAP, Data = ’'mydbase’
; Plots a map using data from a dataset that you have supplied and
; for which a custom read procedure has been written.

NOTE By default, MAP plots vector data. That is, it works like the PLOT
command and uses some of the same keywords as PLOT. If you specify the Filled
keyword to MAP, then MAP works like POLY FILL and uses some of the same
keywords as POLY FILL. The MAP procedure can only produce a“filled” map if
the dataset it reads provides polygon data. Note that the World Databank |1 dataset
does not provide polygon data, but the USGS Digital Line Graph Dataset does.

Creating and Customizing Maps 301

Specifying a Map Projection

The Projection keyword for the MAP procedure lets you specify a projection for
the map that isdrawn. PV=WAVE provides several built-in projections, but you can
also add your own projection agorithm.

For example:

MAP, Projection = 3
; Create a Cylindrical Mercator projection using the
; World Databank Il data.
MAP, User = ’'myprojection’
; Use a projection algorithm supplied by a user. The projection name,

; “myprojection”, is the name of a PV=WAVE routine in which the
; projection is defined.

For information on adding your own projection algorithm to PV=WAVE, see
Defining Your Own Projections on page 318.

To specify aprojection, set the Projection keyword to the corresponding map pro-
jection index number. The map projections and their index numbers are:
Map Projections in PV=WAVE

Index Projection Index Projection
1 Equidistant Cylindrical 11 Oblique Azimuthal
Equidistant Oblique
2 Lambert Conformal Conic 12 Polar Azimuthal
Equidistant Oblique
3 Cylindrical Mercator 13 Polar Azimuthal Equal-Area
4 Sinusoidal 14 Oblique Azimuthal Equal-Area
5 Albers Equal-Area Conic 15 Transverse Mercator
6 Polyconic 16 Mollweide (Ellipsoid)
7 Polar Stereographic 99 Satellite (3D mapping onto a sphere)
8 Oblique Stereographic -1 User-defined projection (automatically set if the

User keyword is supplied)
9 Obligue Orthographical 0 No projection
10 Polar Orthographical

302 PV-WAVE User’s Guide

Subsetting the Map Dataset

This section discusses the Select, Range, Zoom, Center, and Resol ution keywords.
These MAP keywords are used to subset the map dataset in different ways. For
more information on subsetting, see How to Optimize Your Mapping Application
on page 311.

Selecting Map Attributes
Usethe MAP Select keyword to specify the type(s) of map data (attributes) to plot.

To use the Select keyword, you need to know the special attributes (e.g., cities,
political boundaries, rivers, continents) that are defined in the dataset. For example,
the World Databank |1 includes coastlines, international boundaries, state
boundaries, and rivers.

The following MAP command uses the Select keyword to specify that “CIL”
(coastling, idland, and lake) and “RIV” (river) data be plotted.

MAP, SELECT = {, GROUP: [’CIL’, 'RIV’]}

NOTE The Select keyword takes an unnamed structure as its input. For
information on unnamed structures, refer to the PV-WAVE Programmer’s Guide.

Specifying the Map Limits

There are two ways to specify the portion of a map dataset to display. You can use
the Range keyword or the Zoom and Center keywords.

Using Range Keyword

To use the Range keyword, you need to know the extent of the map data (its range
inlongitude and latitude). The World Databank |1 dataset, for example, isglobal in
extent.

The Range keyword specifies the range of longitude and latitude values to be dis-
played. Range requires afour-element array containing the minimum longitude,
minimum latitude, maximum longitude, and maximum latitude values to be
plotted.

For example, the following MAP command uses the World Databank 11 data and
plots the world map from between —90 and 90 degrees longitude and between —45
and 45 degrees latitude.

MAP, RANGE = [-90, -45, 90, 45]

Creating and Customizing Maps 303

Using Zoom and Center

For some applications the Zoom and Center keywords might be more convenient
to use than the Range keyword to specify map limits.

To “zoom” in on a point on a map, use the Zoom and Center keywords. Center
specifies atwo-element array containing the longitude and latitude of the point to
zoom in on. The Zoom keyword specifies a*zoom factor”. A zoom factor of 1 (the
default) plots the entire globe. A zoom factor of 2 plots one-half of the globe, and
SO on.

For example, the following MAP call produces the plot shown in Figure 12-3:

MAP, Center = [-90, 30], Zoom = 2, $
/Gridlines, Gridstyle = 1

Figure 12-3 A partial world map plotted using the Center and Zoom keywords.

Plotting Great Circles, Straight Lines, and Text

Usethe MAP_PLOTS procedure to draw either great circles or arbitrary straight
linesonamap. MAP_PLOTS can a so be used to compute geographical distances.
To annotate a map, use the MAP_XYOUTS procedure.

Drawing Great Circles

A great circle is the intersection between a plane passing through the center of a
sphere and the surface of a sphere. On amap, great circle lines represent the short-

304

PV-WAVE User’s Guide

est distance between two geographical points. On most projections, great circles
appear as curved lines.

By default, MAP_PLOTS computes the great circle between two points on a map
projection and draws the great circleline.

Drawing Arbitrary Straight Lines

Use MAP_PLOTS with the NoCircle keyword to draw straight lines between two
points on amap. Straight lines can be used to highlight or draw attention to a par-
ticular feature. The lines drawn are not great circle lines.

Calculating Distances

The Distance keyword to MAP_PLOTSreturnsin anamed variable the actual dis-
tance in miles or kilometers between points. If two points are plotted, the distance
isreturned asascalar; if multiple pointsare plotted, then an array of distancevalues
isreturned.

Adding Text to Maps

The MAP_XYOUTS procedure lets you position text on a map at specified longi-
tude and | atitude coordinates. This routine takes as parameters a point, specified as
alongitude and latitude coordinate, and atext string. Keywords let you modify the
text size, thickness, color, and alignment.

Example

The following example uses MAP, MAP_PLOTS and MAP_XYOUTSto plot a
great circle between two cities (Boulder, Colorado and L ondon, England) and | abel
the cities. The distance between the citiesis also calculated and placed into atext
label. (The map produced by this code is shown in Figure 12-4 on page 306.)

MAP, RANGE = [-150, 30, 30, 70], /Axes, $
/GridLines, GridColor = 10, GridStyle = 1
; Plot the map.
MAP_ PLOTS, [-105.3, -0.1], [40.0, 51.5],s
Distance = 4, /Miles, Color = 5, §
Psym = -2, Thick = 2

; Plot a great circle between two points. Return the
; distance between the points with the Distance keyword.

MAP XYOUTS, -103.0, 38.0, ’‘Boulder’, S
Color = 5, Charsize = 1.5, Charthick = 2

; Label one city.

Creating and Customizing Maps 305

MAP_ XYOUTS, 2.0, 49.0, ’'London’, S
Color = 5, Charsize = 1.5, Charthick = 2

; Label the other city.

MAP XYOUTS, -65.0, 42.0, ’'Distance =’ + $
STRCOMPRESS (STRING (A (0), $
Format = ’(I5)’))+ ' miles’, $

Color = 5, Charsize = 1.5
; Add a text string containing the distance.

60°

1500

- 40°

. 5@0[\]

Figure 12-4 A map projection that shows the great circle arc and labels the distance
between Boulder, Colorado and London, England.

Adding an Image Under the Map

Use the Image keyword to specify the name of an image (2D array) to be drawn
under the map. The image is warped to fill the entire area specified by the Range

keyword.

Thefollowing example warpsa 2D array of global elevation data onto a sinusoidal
map projection of the earth. The map produced by this example codeis shown in
Figure 12-5.

file = ’'$VNI_DIR/mapping-1 1/data/’+’earth elev.dat’

; (UNIX only) Get the path/filename of file containing
; a 2D array of global elevation data.

file = 'VNI_DIR: [MAPPING-1 1.DATA]’ + ’‘earth elev.dat’

306

PV-WAVE User’s Guide

; (OpenVMS only) Get the path/filename of the global elevation data.

elev = FLTARR(720, 360)
; Create array to hold image.
OPENR, 1, file, /Xdr
; Open and read the image data file into the array.
READU, 1, elev
CLOSE, 1
WINDOW, Xsize=720, Ysize=360, Colors=128
TVLCT, 150, 150, 150, 63
red = BYTARR (63)
grn = BYTSCL (FINDGEN (63) *2.0)
blu = BYTSCL ((FINDGEN (63)))

TVLCT, red, grn, blu, 0
TVLCT, 255, 255, 255, 127
: Define and load a colortable.
MAP, Projection = 4, Range = $
[-180,-90,180,90], Image = elev
; Reference the image array with the Image keyword to warp
; the image around the map projection.

Figure 12-5 A 2D array of global elevation data is warped around a sinusoidal map projec-
tion of the globe. This map data is displayed by PV=WAVE from the World Databank Il
dataset.

Creating and Customizing Maps 307

Adding Contour Lines

MAP_CONTOUR letsyou overlay contours on amap. Thisroutine workslikethe
regular CONTOUR procedure in PV=WAVE, except that MAP_CONTOUR
assumes that the X and Y vectors specified or created by default are specified in
terms of longitude and latitude coordinates.

When plotted, the contour datais projected so that the contour lines accurately
describe features on the surface of the globe.

The following example plots contour dataon amap. The result is shownin Figure
12-6.

file = '$VNI DIR/mapping-1_1/data/’+$
"earth elev.dat’
; (UNIX only) Get the path of file containing 2D array of
; global elevations.
file = ‘VNI_DIR: [MAPPING-1_ 1.DATA]’ +$
‘earth elev.dat’
; (OpenVMS only) Get the path of the global elevation data.
file = '$VNI_DIR%\mapping-1_ 1\data\’+$
"earth elev.dat’
; (Windows only) Get the path of file containing 2D array of
; global elevations.
elev FLTARR (720, 360)
; Create an array to hold the image.
OPENR, 1, file, /Xdr
; Open and read the image data file into the array.
READU, 1, elev
CLOSE, 1
water = BYTSCL(elev, Max = 0.0, Top = 63)
land = BYTSCL(elev, Min = 0.0, Top = 63)
elev = water + land
elev = REBIN(elev, 360, 180)
DATA = FLOAT (elev(-150+180:30+180, 30+90:70+90))

; Subset the array of elevation data. The elevation dataset

; contains an elevation for each degree of longitude and

; latitude, from —180 to 180 degrees longitude and

; from —90 to 90 degrees latitude. The array expressions in
; this command subset the data corresponding to the range
; of data used in the MAP procedure call.

MAP, Projection = 4, Range = $
[-150, 30, 30, 70], Thick = 2

TEK _COLOR

308

PV-WAVE User’s Guide

MAP CONTOUR, DATA, C Colors
[2,8,16,18,20,4], Levels

$
[20,30,35,40,50]

Figure 12-6 Contour lines are plotted over a map projection.

In addition to line plot overlays, the Fill and Pattern keywords allow contoursto be
filled in the sameway that POLY CONTOUR isused tofill contour plots. The same
cautions associated with POLY CONTOUR apply, in that all contour lines must be
closed. Thisisusually accomplished by padding the data with zeros or some other
value outside the range of the data. For an exampl e of thistechnique, seethe POLY -
CONTOUR procedure in the PV-WAVE Reference.

NOTE MAP_CONTOUR withtheFill keyword isnot supported for projection 99
(Satellite), but good results can be obtained by creating a two-dimensiona image
with CONTOUR and POLY CONTOUR and then using the Image keyword with
MAP to wrap this image onto the globe.

Adding Vector Lines

MAP_VELOVECT creates two-dimensional velocity vector plots. It works just
like the PV=WAVE VELOVECT procedure, except that MAP_VELOVECT takes
longitude and latitude coordinates as input. When the vector lines are plotted, the
current map projection is taken into account so that the vector lines are depicted
accurately on the map, as shown in Figure 12-7.

u = fltarr (20, 20)
v = fltarr (20, 20)

Creating and Customizing Maps 309

FOR j = 0, 19 DO BEGIN
FOR 1 = 0, 19 DO BEGIN
x = 0.05 * float (i)
z = 0.05 * float(3j)

u(i, j) = -sin(!Pi*x) * cos(!Pi*z)
v(i, j) = cos(!Pi*x) * sin(!Pi*z)
ENDFOR
ENDFOR
MAP, Projection = 4, Range = [-150, 30, 30, 70]

MAP VELOVECT, u, v, Color = 5

~ o~
~ —

[\

PTTTRS NN

MTTTASE
S]

r s

E = Kf/‘a

Figure 12-7 Vector lines are added to a map projection.

Creating Filled Maps

The MAP_POLYFILL routine provides essentially the same functionality asthe
POLYFILL routine for plotting filled polygons, except that the data provided is
assumed to be longitude/latitude datawhich will be projected before being plotted.
Standard POLY FILL keywords such as Color, Pattern, Fill_Pattern, Line_Fill,
Linestyle, Thick, Psym, Spacing and Symsize can be used to specify the character-
istics of the polygon to be plotted.

NOTE MAP_POLYFILL cannot be used with the Satellite (3D Mapping onto a
Sphere) projection.

310 PV-WAVE User’s Guide

How to Optimize Your Mapping Application

This section describes several methods for improving the performance of your
mapping application. These methodswill help you to design amapping application
that performs well at an acceptable resolution.

Ingeneral, map datais processed and displayedin four stagesin PV=WAVE. When
considering how to improve the performance of amapping application, it ishelpful
to keep in mind these four stages, illustrated in Figure 12-8.

Read the p| Subset the p| Project the) Plot the
Dataset Dataset Dataset Dataset
1 2 3 4

Figure 12-8 Basic stages required to generate a map in PV-WAVE.

This section focuses on performance improvements that can be gained in stages 1
and 2. Stage 3 cannot be improved substantially, because it depends on array oper-
ations, which are already greatly optimized by PV=WAVE.

The performance of stage 4, plotting the data, depends largely on the size of the
dataset being plotted. Reducing the size of the dataset is the primary focus of this
section.

A summary of methods for improving the speed at which PV=WAVE reads and dis-
plays map datais shown in the following table. More details are provided in this
section.

Methods for Optimizing Mapping Applications

Optimization Method Advantages Disadvantages
Subsetting datawith ~ Keywords are easy to use and Subsetting can be aslow
MAP keywords Select, accessibleto all PV=WAVE process for very large
Range, Center, and users. datasets.

Zoom. Allow you to display only those May not be sufficient if a
portions of the map that areof large portion of the map
interest. must be displayed at
Reduces the overall amount of once.
datato be plotted.

How to Optimize Your Mapping Application 311

Methods for Optimizing Mapping Applications (Continued)

Optimization Method

Advantages

Disadvantages

Reduce the number of
map data points plot-
ted with the Resolution
keyword.

Usethe File_Path
keyword to save a
subsetted dataset in a
binary file that can be
read and displayed
quickly with the
Read_Path keyword.

Use DEVICE, /Copy
or TVRD to create an
image of a basemap
that can be rapidly re-
displayed.

Writea C or FOR-
TRAN procedureto
read and subset alarge
map dataset before
placing the datain
memory.

Useful for wide-area maps
where fine detail may not be nec-
essary.

Reduces the overall amount of
datato be plotted.

Subsequent callsto MAP can
skip the steps of reading and
subsetting the map data.
Provides excellent performance
for applications that make calls
to the MAP procedure to plot
and replot the same dataset.

Provides excellent performance.

Useful for handling user-sup-
plied datasets that are too large
to read into memory in one
chunk.

PV=WAVE can access the C or
FORTRAN procedure via
LINKNLOAD.

Reduces the overall amount of
datato be plotted.

Cannot be used with the
usgs db dataset.

Reduces the
detail/accuracy of the
original map.

Resolution islimited to
the resolution of the win-
dow into which the data
iscopied.

Only useful for C or
FORTRAN program-
mers. Some knowledge
of PV=WAV E connectiv-
ity featuresis also
required.

Reduces the
detail/accuracy of the
original map.

Subsetting Data with MAP Procedure Keywords

Perhaps the easiest way to improve the performance of amapping applicationisto
subset the map dataset using keywords provided with the MAP procedure. These
keywords are passed directly to the procedure that reads the map dataset, so that

the data is subsetted before it is read into memory.

For additional information on the keywords described bel ow, see the description of
the MAP procedure in the PV-WAVE Reference. See also Subsetting the Map
Dataset on page 303.

312

PV-WAVE User’s Guide

Subsetting with the Select Keyword

The Select keyword reduces the amount of data returned to the MAP procedure. It
letsyou specify only the map featuresthat you want to plot from the dataset. Select-
ing a subset of the available map features can improve performance significantly.

The Select keyword can be used to subset thewor1d db and usgs_db datasets.

Subsetting with Range, Zoom, and Center Keywords

These keywords | et you subset amap dataset by specifying arange of datato plot.
In other words, only the datathat fallswithin aselected areaisreturned by theMAP
procedure. With the Range keyword, you specify an areato plot within arange of
longitude and latitude values. The Zoom and Center keywords allow you display
an area surrounding a specified point.

Subsetting with the Resolution Keyword

The Resolution keyword reduces (samples) the number of data pointsthat are plot-
ted, thereby reducing the map resol ution. Thiskeyword can be useful when plotting
awide area map where the full resolution of the database might not be discernible
given the resolution of the output device.

This keyword can only be used with the wor1d db dataset.

Use File_Path and Read_Path Keywords to Avoid Re-read-
ing Data

As noted previously, the procedure that reads the dataset (e.g., world db or
usgs_db) isresponsible for performing most of the subsetting. However, each
time the MAP procedure is called, the map-reading procedure is called, and the
process of subsetting the data is repeated.

Thisensuresthat thefull resolution of these datasets can be accessed when needed,
but can slow down performance when the same data subset must be plotted
repeatedly.

The File_Path and Read_Path keywords to the MAP procedure store a subsetted
dataset in abinary fileand then read it for subsequent callsto MAP. The Read Path
keyword restores the data quickly without calling the dataset-reading procedure.

Thus the mapping process is reduced to reading a small dataset, projecting it, and
plotting it. This method provides the optimal performance and the best resolution
for large datasets. The demonstration routines for mapping use this technique to

How to Optimize Your Mapping Application 313

optimize their speed of execution, and the same technique can be used in your own
applications. The demonstration routines are in:

(UNIX) $VNI DIR/mapping-1_ 1/demo
(OpenVMS) VNI DIR: [MAPPING-1_1.DEMO]
(Windows) %VNI DIR\mapping-1_ 1\demo
Where VNI_DIR isthe main Visua Numericsinstallation directory.

Creating a Basemap Image

There are other techniques, not strictly related to mapping, which can be used in
some circumstancesto further increase the performance of drawing abasemap. For
instance, if a basemap needs to be redrawn quickly many timesin an X Window
System environment, the command:

DEVICE, Copy

can be used to rapidly update a window from a copy held in another window. The
following example demonstrates this, and can be used to update amap in afraction
of asecond, but with the limitation that the resolution is limited to that of the win-
dow in which the map is created.

WINDOW, 1, Xsize = 600, Ysize = 400, /Pixmap
; Create an invisible pixmap window.

MAP, Center = [10, 50], Zoom = 7
; Draw a map of Europe.

WINDOW, 0, Xsize = 600, Ysize = 400
; Create a visible window of the same size.

DEVICE, Copy = [0, 0, 600, 400, 0, 0, 1]
; Copy the contents of the pixmap window to the visible window.
; (This can be repeated indefinitely.)

Itisalso possibleto usethe TVRD command to copy the contents of awindow con-
taining abasemap into abyte array variable. Saving thisvariablein afileallowsthe
basemap to be restored by simply reading the variable and redisplaying the image,
asin this example:
WINDOW, Xsize = 600, Ysize = 400

; Create a window.

MAP, Center = [10, 50], Zoom = 7
; Draw a map of Europe.
basemap = TVRD(0,0, 600, 400)
; Copy the contents of the window to the basemap variable.

314

PV-WAVE User’s Guide

SAVE, basemap, File = 'mybasemap.dat’
; Save the basemap variable.

Then to restore the basemap later:

RESTORE, File = ’‘mybasemap.dat’
; Restore the basemap image.

WINDOW, 1, Xsize = 600, Ysize = 400
; Create a window.

TV, basemap
; Redisplay the basemap image.

Optimized Data Reading

Two procedures designed to read map datasets are provided with PV=-WAVE.
These procedures, world dbandusgs_db, read map datadirectly into memory
whenever they are called.

If you supply your own dataset (that is, a dataset other than the World Databank 11
or USGS datasets) and write a procedureto read it, it is possible that it will be too
large to read the entire dataset into memory at once.

Inthis case, aC or FORTRAN program can be written to read and subset the data
prior to placing it in memory. Using connectivity features, such as LINKNLOAD,
aPV=WAVE procedure can be written to call the C or FORTRAN programin a
mapping application. This method can provide the best access speed for large
datasets, and can be useful when you need to perform alot of testing to determine
how to subset the data correctly.

See Accessing Other Map Datasets on page 315 for information on writing a pro-
cedure to read a dataset.

Accessing Other Map Datasets

Two map datasets are included with PV=WAV E: the World Databank |1 dataset and
the USGS Digital Line Graph Dataset. These built-in map datasets are subsets of
the actual datasets, and are included to provide relatively fast and efficient access
to map data while still maintaining adequate resolution when asmall areais
plotted.

Two procedures are provided to read these datasets: usgs_db.pro and
world db.pro. These procedures are called by the MAP procedure.

Accessing Other Map Datasets 315

A procedurecalled ascii db.pro isaso provided in the mapping library to
help you read your own map datasets that are in ASCI| format. You can use the
ascii_db procedure as atemplate for reading a user-defined dataset.

If you use the MAP procedure with the Data keyword set to ascii db, usethe
Select keyword to specify the name of the file containing the ASCII data. The
ASCII file containing the data must conform to the following format:

* Two columns of numbers, either comma or space separated.

» Thebeginning of each polyline or polygon indicated by arecord with “999” in
thefirst column and the color in the second column.

e Thisrecord isfollowed by any number of records containing pairs of coordi-
nates for the X and Y or longitude and latitude.

Writing a Procedure to Read a Map Dataset

To use any map dataset, PV=WAVE must be given specific information about the
dataset. Thisinformation is placed in a procedure file that is executed when the
MAP procedure is called with the Data keyword.

A procedure for reading a map dataset reads and subsets the map dataset using
attribute selections of the data. A map dataset procedure must contain thefollowing
four positional parameters:

» data— A 2-by-nfloating point array of longitude/latitude points (in degrees)
returned from the dataset.

* index — A 2-by-mlong array containing the starting and ending indices of
each polyline or polygon in the map dataset.

» select — A variable passed from the MAP procedure viaits Select keyword.
This passed variable can be an unnamed structure containing astag fields the
names of section criteria recognized by the map dataset (such as cities, coun-
tries, rivers). The use of thisvariableisentirely defined within the map dataset
procedure.

e resolution — A variable containing the number of pointsto skip in alarge
dataset. A higher resolution valueimproves performance at the expense of map
detail. This variable must be present in the user defined procedure, but its use
is optional and can beignored if it is not needed.

Another way to control the size of the dataset returned by the dataset-reading pro-
cedure isto use the 'Map.X.Range and !Map.Y.Range system variables. These
system variables contain minimum and maximum longitude and | atitude valuesfor
the current plot, and can be used to subset the dataset and reducethe size of the data
array returned.

316

PV-WAVE User’s Guide

NOTE Whenthe MAP procedureiscalled, anew system variable !Map is created
to contain parameters used by the mapping routines. These parameters are also
used in user defined projections and user-defined map dataset procedures. For
information on the fields of this system variable, refer to thefilemap . proin:

(UNIX) SVNI DIR/mapping-1 1/lib/map.pro
(OpenVMS) VNI DIR: [MAPPING-1_ 1.LIB]MAP.PRO
(Windows) %VNI DIR%\mapping-1_ 1\lib\map.pro

The dataset-reading procedure returns the datato be projected and plotted based on
the selection criteria, areabeing plotted, and optionally the resolution desired. The
procedure can read the entire map into avariable thefirst timeit is called and then
subset the data directly from memory, asis done for the World Databank 11 and
USGS Digita Line Graph Dataset procedures. Or, the procedure can read the
dataset from disk each timethe procedureis called, which would be appropriate for
very large datasets.

Example Programs Are Provided

For more information on how to create a procedure to read a map dataset, look at
the following procedures that are provided with PV=WAVE:

(UNIX) $VNI DIR/mapping-1 1/lib/world db.pro

(OpenVMS) VNI DIR: [MAPPING-1 1.LIB]world db.pro

(Windows) %VNI DIR%\mapping-1 1\lib\world db.pro

(UNIX) $VNI DIR/mapping-1 1/lib/usgs _db.pro

(OpenVMS) VNI DIR: [MAPPING-1 1.LIBJusgs db.pro

(Windows) %VNI DIR%\mapping-1 1\lib\usgs db.pro

(UNIX) $VNI DIR/mapping-1 1/lib/ascii db.pro

(OpenVMS) VNI DIR: [MAPPING-1 1.LIBlascii db.pro

(Windows) %VNI DIR%\mapping-1 1\lib\ascii db.pro

Use these programs to guide you in writing your own procedure to read a dataset.

TIP To convert data stored as degrees, minutes, and seconds to a single floating
point value for use in the mapping routines, the formulais:

value = degrees + minutes/ 60.0 + seconds / 3600.0

Accessing Other Map Datasets 317

Defining Your Own Projections

You can specify anew projection by creating a PV=WAV E procedure defining the
projection algorithm. Then, call MAP and specify the name of your projection rou-
tine with the User keyword. The projection routine is passed a single parameter,
values, a 2-by-n floating point array of longitude/latitude valuesto be transformed
and returned in the same array.

A second parameter, index, must also beincluded, but itsuseisoptional. On return
index can contain avector of integers specifying the indicesin the values array to
plot. If index isnot used, it is assumed that all projected pointsin values are valid.

In addition a keyword parameter Reverse must be defined so that if the procedure
is called with Reverse, the data can be passed through a reverse transformation
from two-dimensional data coordinates to longitude/latitude values. The system
variables 'Map.Center and ! Map.Parameters also may be used in a user defined
procedure to supply other necessary information for the projection algorithm.

NOTE Whenthe MAP procedureiscalled, anew system variable !Map is created
to contain parameters used by the mapping routines. These parameters are also
used in user defined projections and user-defined map dataset procedures. For
information on the fields of this system variable, refer to thefilemap . proin:

(UNIX) S$VNI_DIR/mapping-1_ 1/1lib
(OpenVMS) VNI DIR: [MAPPING-1 1.LIB]
(Windows) %VNI DIR%\mapping-1_1\1lib

Example

An example user-defined projection is provided in:

(UNIX) S$VNI_DIR/mapping-1_1/demo/userproj.pro

(OpenVMS) VNI DIR: [MAPPING-1 1.DEMO]userproj.pro

(Windows) %VNI DIR%\apping-1_1\demo\userproj.pro

This example projection program produces atilted perspective (modified azi-
muthal) projection. Use this program to guide you in writing your own projection
procedures.

Here is an example map produced with the “user-defined” projection
userproj .pro:

MAP, Center=[-74, 41], Zoom = 2, /Gridlines, $
Gridstyle = 1, Gridcolor = 15, $
User = ‘userproj’, Parameters = [10.0, 200.0, 20.0]

318

PV-WAVE User’s Guide

Figure 12-9 A user-defined projection produced this tilted view of the globe.

Creating Interactive Map Applications

TheMAP_REVERSE procedure convertsthe X-Y coordinate output from routines
like CURSOR and WtPointer into longitude and latitude coordinates. CURSOR
and WtPointer return the coordinates of the cursor or pointer after a mouse click.

NOTE MAP_REVERSE cannot be used with the Satellite (3D Mapping onto a
Sphere) projection.

TIP If you are developing an interactive widget-based mapping application, ook
at the demonstration programmap_test . pro inthe directory:

(UNIX) $VNI DIR/mapping-1 1/demo

(OpenVMS) VNI DIR: [MAPPING-1_1.DEMO]

(Windows) %VNI DIR%\mapping-1 1\demo

Where VNI_DIR isthemain Visual Numericsinstallation directory.

This program uses PV=WAV E Widgets to create an interactive mapping demon-
stration. You can copy this code and use it as atemplate for creating your own
mapping applications. To run the demonstration, moveto the demo directory using
the PV=WAVE CD command, then typemap test at the PV=WAVE prompt.

Creating Interactive Map Applications 319

320 PV-WAVE User’s Guide

PV-WAVE on the World Wide Web

PV=WAVE provides acollection of features that allow you to process and present
data across the Internet. You can aso use the new functionality to work efficiently
across private intranets.

PV=WAV E’s Web-enabling technology allows you to:

* Develop HTML and VRML files.

* Open remote files for PV=WAVE processing.

* Useyour local PV=WAVE installation as a helper application.
» Usearemote (server-side) PV=WAVE installation.

HTML, VRML, and file handling capabilities are part of the standard library and
documented in the PV-WAV E Reference. Many of these routines and all of the
other web-enabling features are also outlined and demonstrated in the following
directory:

(UNIX) <wavedir>/demo/web

(OpenVMS) <wavedirs>: [DEMO.web]

(Windows) <wavedir>\demo\web

where <wavedirs> isthe main PV=WAVE directory.

Standard Library Web-Enabling Routines

PV=WAVE's standard library contains Hypertext Markup Language (HTML) rou-
tines and Virtual Reality Modeling Language (VRML) routines. (For detailed

321

descriptions, seethe PV-WAV E Reference.) Plus, the following routines have been
added to facilitate file input and output:

« OPENURL
« READ_XBM
« WRITE_XBM

All of these features — previously available only in the user library or from the
Visual Numerics Web site— are now fully supported and integrated into the
product.

The PV=WAVE HTML routines allow you to create World Wide Web documents.
Developing HTML directly with PV=WAVE allows you to put the results of your
data visualization and analysis out on the Internet for othersto see. Along with
graphical representations and formatted reports of your data, HTML makesit con-
venient for you to describe and highlight important information.

The VRML routines allow you to describe three-dimensional representations of
your data that can be viewed with aVRML-enabled browser.

Severa other routines are also useful for processing or producing graphica mate-
rial for usage across the Internet:

* IMAGE_CREATE
* IMAGE_READ
* IMAGE_WRITE

PV-WAVE as a Helper Application

From a Web browser, PV=WAV E can be set up as a hel per application, alowing
you to open virtually any PV=WAVE procedure anywhere on the Internet and exe-
cute it on your system.

For information on creating a hel per application, see the README fileiin:
(UNIX) <wavedir>/demo/web/helper-app

(Windows) <wavedirs\demo\web\helper-app

where <wavedirs isthe main PV=WAVE directory.

OpenVMS USERS Thisfunctionality is not available on OpenVMS.

322

PV-WAVE User’s Guide

Using PV-WAVE Remotely with CGI

You can a'so use PV=WAVE as aremote Web server in conjunction with the Com-
mon Gateway Interface (CGl). For an example of using PV=WAVE on aremote
Web server, look in the directory:

(UNIX) <wavedir>/demo/web/cgi
(Windows) <wavedirs\demo\web\cgi

where <wavedirs isthe main PV=WAVE directory.

OpenVMS USERS Thisfunctionality is not available on OpenVMS.

The CGI demonstration shows how you can use CGlI to invoke PV=WAVE on a
server. For more information, see the REAME in the above directory.

Another practical example of combining PV=WAVE with CGI is contained in the
directory:

(UNIX) <wavedirs>/demo/web/weather
(Windows) <wavedir>\demo\web\weather
where <wavedirs> isthe main PV=WAVE directory.

This example demonstrates a means by which a Java appl et can retrieve datafrom
aremote data source, analyze that data using PV=WAVE, and display it in a Web
browser.

This approach has the advantage of allowing remote users access to PV=WAVE's
visualization and analysis technology in conjunction with remotely located, fre-
quently updated data sources — all while taking advantage of the computational
power that resides on the server.

NOTE The CGI demonstrations require a working knowledge of CGI. Visual
Numerics does not support CGI and takes no responsibility for individual CGlI
configurations.

Using PV-WAVE Remotely with CGI 323

324 PV-WAVE User’s Guide

User’s Guide Index

A

aborting
See also exiting
plots 46
PV-WAVE 12-13
annotation
additional formatting commands 265
map 305
plots 51
positioning text with cursor 79
title of plot 47
with hardware fonts 259
with software fonts 262, 270
arrays
See also subsetting
contouring 2D 82
decrease sampling 86
reading
from display 124
arrow keys, command recall 33
attributes
of window 26
automated demonstration 6
axes
adding to plot 65-66
additional 65
annotation of 47
coordinate systems for 65, 66
date/time 50, 201, 219
exchange of 111
logarithmic 63
positioning of 64
range of 48
scaling of 47, 63
styles of 47
suppressing 66
azimuthal map projection 298

B

bandpass filters 142-143

bar charts 56-58

bilinear interpolation 123, 147
BUILD_TABLE function 239
Butterworth filters 142—-143
BYTSCL function 134

C

C_EDIT procedure 294
CENTER_VIEW procedure 179
CGl 323
clipboard
copy graphics to 40
clipping
controls in PV-WAVE 70
defining a rectangle for 68
definition of 67
examples 72—-78
graphics output 68
keywords and system variables 70
PV-WAVE commands that use 70
suppressing 73
3D plots 101
closing
graphics output file 21
color
ambient component of 183
bar, purpose of 283, 293
common block, obtaining colors from
285
!d.n_colors system variable 287
editing interactively 282, 293
making color table with HLS or HSV
system 294
number available on graphics device
287

plot elements 286
pseudo 128
translation
table 275
true-color 128
vector graphics 278
with monochrome devices 277
color systems
definition 273
HLS 276
HSV 276
RGB 274
color tables
adding new 293
changing predefined 293
contrast, control of 135
copying 291
creating 292
discussion of 127, 277
editing 282, 293
expanding with INDGEN 280
histogram equalizing 292
HLS based system 292-293
HSV based system 292
indices
changing default 42
definition of 42, 273
displaying 294
interpretation of 43
list of 279
loading
from colors.tbl file 127
from variables 127, 278, 293
into device 127
procedures for 278, 292
lookup table 275
modifying 293
obtaining 285
reversing 285
rotating 285
stretching 285, 293
supplied with PV-WAVE 127, 278, 292
switching between devices 291
24-bit devices 130
COLOR_EDIT procedure 294
COLOR_PALETTE procedure 294
colormap
See also color tables
command files
executing at startup 10, 27

command recall
using arrow keys 33
with INFO command 16
common block
colors 285
CONE function 181
conformal map projection 298
CONGRID function 123
connecting data points with lines 52
.CON 12, 26
.CONTINUE command 13
continuing program execution 12, 26
contour plots
add to map 308
algorithms used to draw 83
closing open contours with arrays 95
combining with
images 87
surfaces 110
enhancing 85
examples 82, 84-86, 89, 91
filled
on map 309
with color 94
follow method algorithm 84
labeling 91
levels
color of 94
scattered data 82
smoothing 93
sparse data 82
2D arrays 82
CONTOUR procedure 81
CONTOUR2 procedure 81
contrast, control 134
control characters, list of those that stop or
interrupt PV-WAVE 26
Control-\, aborting PV-WAVE 12
Control-Break
aborting PV-WAVE 26
interrupting PV-WAVE 26
Control-C
interrupting PV-WAVE 12, 26
using to abort plots 46
Control-D, exiting PV-WAVE on a VMS
system 11
Control-Y 13
Control-Z
on UNIX 11
on VMS 11

PV-WAVE User’s Guide

CONV_FROM_RECT function 178
CONV_TO_RECT function 178
converting

3D to 2D coordinates 106

between graphics coordinate systems 44,

178
data to
date/time 203, 207
date/time variables to strings for tables
252
CONVOL function 138, 141
convolution 138
coordinate systems
constructing 3D 107
converting from one to another 44, 178
graphics 43, 45
homogeneous 99
polar 66
reading the cursor position 78
right-handed 99
screen display 120
copying
graphics, from window to clipboard 40
CREATE_HOLIDAYS procedure 215
CREATE_WEEKENDS procedure 216
cubic splines
to smooth contours 93
cursor
controlling position of with TVCRS 125
in mapping applications 319
positioning text with 79
CURSOR procedure 78
customizing PV-WAVE
when changes are remembered 26
CYLINDER function 181

D

data
coordinate systems 43
logarithmic scaling 63
map 299
overplotting 49

date/time data
conversion routines 207
converting to

strings for tables 252

description of 201
empty variables, creating 205
excluding days 215

holidays 215

in tables 251

Julian day 204, 253

plotting 217-226, 239

reading into PV-WAVE 206

recalc flag 205

structure 204

writing to a file 228
DAY_NAME function 231
DAY_OF_WEEK function 231
DAY_OF_YEAR function 232
DC_READ_FIXED function 225
DC_READ_FREE function 219-222
dde

runtime mode, starting 27
decal, definition of 184-185
demonstration

files 8

gallery 6, 34
density function, calculating histogram

292
device coordinate system 43, 45
DEVICE procedure 20
diffuse component of color, for RENDER

function 182
display

reading from 124
DIST function 142
distance, calculating on a map 305
distortion, linear 148
dithering, different methods compared

129
Id.n_colors system variable 287
documentation, online

manuals online 3

optional products 5

PV-WAVE Gallery 6

starting from OS prompt 3

starting from WAVE> prompt 3

using 4
DT_ADD function 213
DT_COMPRESS function 217
DT_DURATION function 214
DT_PRINT procedure 232, 233
DT_SUBTRACT function 214
DT_TO_SEC function 230
DT_TO_STR procedure 228
DT_TO_VAR procedure 229
dynamic

memory 16, 35

Dynamic Data Exchange. See dde

E

edge enhancement
methods 139-141
EMF files
copy to clipboard 40
paste from clipboard 40
empty output buffer 26
ending PV-WAVE sessions 25
equal area projection 298
equidistant map projection 298
executive commands
.CON 12, 26
exiting
PV-WAVE 11
unconditionally 25

exporting graphics, using the clipboard 40

F

F1 function key (Windows) 34
F2 function key (Windows) 34
fast Fourier transform
applied to images 141
spectrum, 2D 144
FAST_GRID2 function 176
FAST_GRIDS function 176
FAST_GRID4 function 177
filling. See polygon fill
filters
bandpass 142
Butterworth 143

exponential high- or lowpass 143

highpass 139, 142, 143
image 141-142
lowpass 142, 143
Roberts 139
Sobel 139
2D 142
Floyd-Steinberg dithering 130
flushing
output buffer 26
fonts
See also annotation

additional formatting commands 265

changing 262

choosing 259

default PostScript 265
formatting commands 261

hardware vs. software 259
positioning commands 269
selection commands 262
text rotation 260
3D transformations 259
using 261
formatted data
commands for software fonts 261
frequency domain techniques 141
function keys
equating to character strings
(Windows) 34
functions
stopping execution 26

G

gallery demonstration, using 6, 34
geometric transformations 146-150
Gouraud shading 115
graphics
reading, from clipboard 40
graphics window
definition 29
menu, shown in figure 38
shown in figure 29
gray levels
dithering 129
transformations 132
great circle, plotting a 304
GRID_2D function 176
GRID_3D function 176
GRID_4D function 177
GRID_SPHERE function 177
gridding
4D 177
definition of 176
demonstration programs 170
over a plot 60
GROUP_BY function 235

H

hardware fonts. See fonts

help, online
Hyperhelp 1
introduced 29
printing from Hyperhelp 2
session information 16, 35
UNIX and OpenVMS platforms 1
Windows 3

PV-WAVE User’s Guide

helper application, PV-WAVE as a 321, 322
Hershey fonts 259
highpass filters 139, 142, 143
HIST_EQUAL function 137
HIST_EQUAL_CT procedure 136
histogram
calculating density function 135, 292
equalization 135
mode 52
HLS procedure 292
home window
description of 28
starting the 23, 24
homogeneous coordinate systems 99
HSV procedure 292
HTML, processing files 321

image processing
contrast control 134-135, 293
convolution 138
dithering 129
expanding 123
frequency domain techniques 141
intensities, modifying 133
magnifying 123
polynomial warping 146
rotating 146
sharpening 139
shrinking 123
special effects 292
warping 146
write mask 292

images
combining with surface and contour plots

111
definition of 119
geometric transformations 146
interpolation of 147
orientation of 120
overlaying with contour plots 87-90
placing the cursor in 125
position of on screen 121
reading
from display device 124

routines used to display 119
scaling to bytes 134
size of display 121
transformation matrices 99

true-color 127-128

under maps 306
INDGEN function 280
INFO procedure

quick way to invoke 34
Internet, PV-WAVE on the 321
interpolated shading 115
interrupt, from keyboard 26
Intranet, PV-WAVE on the 321
iso-surfaces

examples 193-197

J

JUL_TO_DT function 210, 226
Julian day 253
description of 204

keyboard
command recall, using 16
defining keys (Windows) 34
interrupt 12, 26
keywords
relationship to system variables 15,
33, 42
specifying in a command 15, 32
Korn shell 9

L

Lambertian shading components 183
learning PV-WAVE
online Help 1
tutorial 1
least square
curve fitting 53
libraries
PV-WAVE Users’ 32
Standard 32
light source
lighting model, rendering 181
shading 115
line
connecting symbols with 53
drawing 107
fitting, example using POLY_FIT 53
linear
distortion 148
LOAD_HOLIDAYS procedure 216

LOAD_WEEKENDS procedure 216, 217
LOADCT procedure 120, 127, 278, 292
loading

PV-WAVE save session file 36

See also opening files
logarithmic

scaling 63
lowpass filters 138, 142-144

M

magnifying images 123

manuals online 3

map datasets
accessing other 315
ASCII format 316
built-in 315
definition of 299

National Imagery and Mapping Agency

(NIMA) 299
reading 300, 315-317
subsetting 303, 312
user-defined 316
USGS Digital Line Graph 299
USGS Names 299
World Databank Il 299
map projections
defining your own 318
PV-WAVE 298, 302
specifying 302
maps

See also map datasets; map projections

annotating 305
calculating distances on 305
contours

adding 308
defining a projection 318-319
demonstration files 296
draw straight lines on 305
example programs list 317
filling 301
great circle, plotting 304
image, adding under 306
introduction 296
keywords used to create 301
plotting 300
projections 297
selecting attributes 303
subsetting 303
velocity vectors, adding to 309

zoom in 304
marker symbols

for data points 53

force histogram mode 52

user-defined 54
masking

unsharp 140
mathematical morphology 151
matrix

See also linear algebra;

transformation matrices

mean

smoothing 138
median

smoothing 138, 139
mesh surfaces, drawing 96, 187-189
minimizing images 123
MODIFYCT procedure 293
monochrome

devices 129

dithering 129
MONTH_NAME function 232
morphology, mathematical 151
mouse

two-button mouse 294
multiple plots 61

N

National Imagery and Mapping Agency
(NIMA) 299

nearest neighbor method 147

normal coordinate systems 44-45

(0

online documentation. See
documentation, online 3
OpenGL 153
OPENURL procedure 322
OpenVMS operating system. See VMS
operating system
OPLOT procedure 45, 49, 50, 226
options
font 26
when saved 26
ORDER_BY function 235
overplotting. See plotting

PV-WAVE User’s Guide

P

PALETTE procedure 294
pixels
reading from the display 124
scalable 122
PLOT_IO procedure 63
PLOT_OI procedure 45
PLOT_OO procedure 61
plotting
3D data 81, 99, 113

See also annotation; axes; clipping; color;
contour plots; coordinate systems;

surface plot; tick marks
axes, exchange of 111
bar graphs 56

combining images and contours 88-90
converting from 3D to 2D coordinates 106

coordinate systems 43
data window 64
date/time data 217-226
histogram 52
input from the cursor 78
logarithmic scaling 63
multiple plots 61
overplotting 49
polar
plots 66
polygons
filling 55
position of plot in window 64
region 64
scaling XY 47
surfaces 96
symbols
creating new 54
specifying 53
table data 255
transformation matrices 99
Ip.multi system variable 61
polar
coordinates 66
plots 66
POLY_2D function 90, 146, 150
POLY_C_CONV function 177
POLY_COUNT function 177
POLY_DEV function 179
POLY_FIT function 53
POLY_MERGE procedure 177
POLY_NORM function 178

POLY_PLOT procedure 180
POLY_SPHERE procedure 175
POLY_SURF procedure 175
POLY_TRANS function 177, 178
POLYCONTOUR procedure 94, 95
POLYFILL procedure 55
polygon fill

example of 55
polygons

generating 173

manipulating 177

meshes 187-188

rendering 155, 164, 169, 180

vertex lists 173
polylines 107
POLYSHADE function 180
POLYWARP procedure 150
printing

graphics output 18-21

help cards (Windows) 38

tables 254
program

stopping execution 26
PSEUDO procedure 293
pseudo-color

compared to true-color 127

images, PostScript 128
PV-WAVE session

exiting 11, 25

files are overwritten 36

getting information about 16, 35

restoring 18, 36

saving 17

Q

quadric animation example 190
QUERY_TABLE function 235
quitting PV-WAVE 10, 27

R

raster

images 119
ray tracing

description of 163, 180-186
READ_XBM Function 322
reading

cursor position 78

date/time data 206

from the display device 124

REBIN function 90, 123
rectangular surfaces 175
Remote Procedure Call. See RPC
remote server 323
RENDER function 180, 186
rendering
See also image processing; ray tracing
color, defining 182
cone objects 181
cylinder objects 181

defining material properties of objects 184

example of 187-199

images, displaying 200

iso-surfaces 197

lighting model 181

mesh objects 181

polygons 169, 180

process of 171

ray-traced objects 180

setting up data for viewing 179

sphere objects 181

standard techniques 179

Chapter 7
Rendering Techniques 153

transmission component 183

volumes 168-169, 180, 181

VTK 153
RESTORE procedure 18, 36-37
RGB

color system 274
right-handed coordinate system 99
ROBERTS function 139
ROTATE function 120, 146
rotating

current color table 285

data 100

text 260
runtime mode

starting PV-WAVE in 25

S

sampled images 119
SAVE procedure 17
saving

PV-WAVE session 17
scalable pixels 122
SCALE3D procedure 109
scaling

data 100

input images with BYTSCL function
134
logarithmic 63
plots 47
Y axis with YNozero 47
SEC_TO_DT function 210
servers
remote 323
Web 323
SET_SHADING procedure 116
SET_VIEW3D procedure 179
SHADE_SURF procedure 115-117
examples 116, 117
SHADE_VOLUME procedure 176, 189
shading
constant intensity 115
examples 116-117
light source 115
methods 115
setting parameters 116
surfaces 115
SHOWS3 procedure 113
SLICE_VOL function 166, 178
SMOOTH function 138
smoothing
contour plots 93
mean 138
median 138
of images 138
SOBEL function 139
SORT function 258
sorting
methods of 258
tables 246
special effects
color 291
SPHERE function 190
spheres
defining with SPHERE function 181
gridding 177
surfaces, creating 175
SQL
See also tables
description of 236
Standard Library
location of 14, 32
starting PV-WAVE
executing a command file 10, 27
from Korn shell 9
new interactive session 9

PV-WAVE User’s Guide

OpenVMS process defaults 10

under OpenVMS 9

under UNIX 9

under Windows 95 24

under Windows NT 23
stopping PV-WAVE 11, 25
STR_TO_DT function 207-209
STRETCH procedure 135, 293
stretching the current color table 285
strings

passing to QUERY_TABLE 250
structures

date/time 204-206

tables, relation to 256-257
subsetting

See also arrays; clipping; sorting

map datasets 303, 312

tables 248
surface plot

combining with image and contour 110-

112
overlaying with contours 110
rotation
transformation matrices 100

transformation matrix 105
SURFACE procedure 81, 96-98, 105
suspending PV-WAVE 11
symbols

connecting with lines 53

marker 53-54

user-defined 54
system variables

clipping, use in 70

!d.n_colors 287

relationship to keywords 15, 33, 42

tick label formats, use in 61

T

T3D procedure 99
See also transformation matrices
tables
columns
descending sort 247
printing with titles 254
renaming 243
creating 238-241
date/time data in 251, 253
examples 237
multiple clauses in a query 251

overview of functions 235
passing variable parameters to table
functions 249
plotting 255, 256
printing with column titles 254
rearranging 242
removing duplicate rows 241
renaming columns 243
sorting 246, 247
structures, relation to 256-257
subsetting with Where clause 248
viewing structure of 239
Tcl 154
TEK_COLOR procedure 15, 33, 289,
293
Tektronix
4115 device
mimicking colors 293
terminating, PV-WAVE session 25
3D graphics. See contour plots;
rendering; surface plot;
transformation matrices
threshold
dithering 130
images 133
tick marks
controlling length of 58
extending away from the plot 58
intervals
setting number of 48
label format 60-61
linestyle 58
non-linear marks 58
number of minor marks 58
title. See annotation
TODAY function 231
transformation
geometric 146
gray level 132
matrix. See transformation matrices
transformation matrices
applied before rendering 179
created with T3D 105, 107
description of 99
keyword discussion 186
rotating data 100
scaling data 100
set up 3D view 107
storing 104
SURFACE procedure 105

translating data 100
translation table
color 275
true-color
compared to pseudo-color 127
definition 128
tutorial, PV-WAVE 1
TV procedure 43, 119
TVCRS procedure 120, 125
TVLCT procedure 120, 127, 278, 288
TVRD function 119, 124
TVSCL procedure 119, 133
24-bit color
plot colors 290
special effects 292
24-bit image data
displaying 130-132
2D plotting. See plotting

U

UNIQUE function 235
UNIX operating system
See also environment variables; operating
system
commands from within PV-WAVE 12
sending output file to printer or plotter 21
unsharp masking 140
Users’ Library
location of 14
location of in PV-WAVE 32
USERSYM procedure 54
USGS Digital Line Graph dataset 299
USGS Names database 299

v

VAR_TO_DT function 209, 218-225
vector

building tables from 240
VECTOR_FIELDS procedure 180
vector-drawn text. See annotation
velocity vectors, plotting on a map 309
vertex lists

description of 173
VIEWER procedure 166, 179
Visualization Toolkit 153
VMS operating system

output to printer or plotter 21

process defaults, increasing 10
VOL_MARKER procedure 180

VOL_PAD function 177
VOL_REND function 180
VOL_TRANS function 178
VOLUME function 193-199
volumes

See also ray tracing; rendering

defining 181

generating 173

manipulating 177

slicing

example of 192

VRML, processing files 321
VTK 153

w

warping of images 146
Web. See World Wide Web
window
Control menu button 38
Help 29
to display graphics 29
Windows
clipboard 40
command recall 33
console window 28
control characters 26
files are overwritten 36
interrupting PV-WAVE 26
location of libraries 32
online help window 29
printing your work 37
types of PV-WAVE windows 28
World Databank Il map dataset 299
World Wide Web
PV-WAVE on the 321
server 323
write mask
creating special effects 291
WRITE_XBM procedure 322
writing
date/time data 228
wvsetup (WVSETUP.COM) file 9

X

X axis. See axes
XY plots. See plotting
XYOUTS procedure 51, 107

10

PV-WAVE User’s Guide

Y

Y axis. See axes

Z

Z axis. See axes
ZOOM procedure 124
zooming

images 123

map area, use in 304

	PV-WAVE User's Guide
	Table of Contents
	Preface
	What’s in this Manual
	Conventions Used in this Manual
	Technical Support
	FAX and E-mail Inquiries
	Electronic Services

	1 - Learning PV-WAVE
	Using the Tutorial
	Using Online Help
	Using Online Help on UNIX and OpenVMS
	Help from the Command Line
	VDA Tools Help
	Printing from Online Help

	Using Online Help on Windows
	Help from the Command Line
	Help from the Program Manager/Start Menu
	VDA Tools Help

	Using Manuals Online
	The Printed Documentation Set
	The Standard PV�WAVE Documentation Set
	PV-WAVE Tutorial
	PV-WAVE User’s Guide
	PV-WAVE Programmer’s Guide
	PV-WAVE GUI Application Developer’s Guide
	PV-WAVE Reference (Volumes 1, 2, and 3)

	Documentation for Optional PV�WAVE Products
	PV-WAVE IMSL Mathematics Toolkit
	PV-WAVE IMSL Statistics Toolkit
	PV-WAVE:GTGRID
	PV-WAVE:Signal Processing Toolkit
	PV-WAVE:Image Processing Toolkit
	PV-WAVE:Database Connection
	PV-WAVE:ODBC Connection
	JWAVE

	Using the Gallery
	PV�WAVE Gallery Setup Under UNIX and OpenVMS
	�PV�WAVE Gallery Setup Under Windows

	Using the Demo Files

	2 - Getting Started: UNIX and OpenVMS
	Starting �PV�WAVE
	Starting �PV�WAVE Interactively
	Executing a Command (Batch) File at Startup

	Stopping �PV�WAVE
	Exiting �PV�WAVE
	Exiting on a UNIX System
	Exiting on an OpenVMS System

	Suspending �PV�WAVE
	Suspending PV�WAVE on a UNIX System
	Suspending PV�WAVE on an OpenVMS System

	Interrupting the Current PV�WAVE Command
	Aborting �PV�WAVE
	Aborting on a UNIX System
	Aborting on an OpenVMS System

	Entering Commands at the Command Line
	Function and Procedure Libraries
	Using Keywords to Modify Commands
	Relationship Between Keywords and System Variables

	Using Command Recall
	Getting Information about the Current Session
	Saving and Restoring Sessions
	Using the SAVE Procedure
	Saving for Future Sessions

	Using the RESTORE Procedure

	Printing Your Work
	Selecting the Output Device with SET_PLOT
	Configuring the Output Device with DEVICE
	Entering Graphics Commands for Output
	Closing the Output File
	Sending the Output File to the Printer or Plotter

	3 - Getting Started: Windows
	Starting PV-WAVE
	Under Windows NT
	Under Windows 95

	Summary of PV�WAVE Startup Commands
	Standard I/O and Error Redirection

	Stopping �PV�WAVE
	Exiting �PV�WAVE
	Interrupting the Current PV�WAVE Command
	Control Characters that Interrupt or Stop �PV�WAVE

	Executing a Command (Batch) File at Startup
	DDE Runtime Mode — wavedde
	Windows Used by PV�WAVE
	Home Window
	Console Window
	Graphics Windows
	Help Window

	Entering Commands at the Command Line
	Function and Procedure Libraries
	Using Keywords to Modify Commands
	Relationship Between Keywords and System Variables
	Using Command Recall

	Function Keys
	Assigning Commands to Function Keys

	Getting Information about the Current Session
	Saving and Restoring �PV�WAVE Sessions
	Using the RESTORE Procedure
	Things to Remember when Restoring Files

	Printing Your Work
	Printing the Contents of a Graphics Window
	Printing �PV�WAVE Help Topics
	Using the PV-WAVE Output Drivers
	Exporting Graphics to a File

	Using the Clipboard
	Copying Graphics to the Clipboard
	Pasting Graphics from the Clipboard

	4 - Displaying 2D Data
	Summary of 2D Plotting and General Graphics Routines
	Customizing Plots with Keyword Parameters
	Keyword Correspondence with System Variables
	Example of Changing the Default Color Index
	Using the Color Keyword Parameter
	Changing the !P.Color System Variable
	Interpretation of the Color Index

	Three Graphics Coordinate Systems
	Data Coordinate System
	Device Coordinate System
	Normal Coordinate System
	Coordinate System Conversion

	Drawing X Versus Y Plots
	Producing a Basic XY Plot
	Scaling the Plot Axes and Adding Titles
	Using YNozero to Scale the Y–Axis
	Adding Titles

	Specifying the Range of the Axes
	Specifying Exact Tick Intervals with XStyle = 1

	Plotting Additional Data on the Same Axes
	Plotting Date/Time Axes
	Annotating Plots
	Selecting Fonts
	Using XYOUTS to Annotate Plots

	Plotting in Histogram Mode
	Using Different Marker Symbols
	Defining Your Own Marker Symbols
	Using Color and Pattern to Highlight Plots
	Drawing Bar Charts
	Controlling Tick Marks
	Example 1: Specifying Tick Labels and Values
	Example 2: Specifying Tick Lengths
	Example 3: Specifying Tick Label Formats

	Drawing Multiple Plots on a Page
	Plotting with Logarithmic Scaling
	Specifying the Location of the Plot
	Drawing Additional Axes on Plots
	Drawing Additional Axes Example

	Drawing Polar Plots
	Clipping PV�WAVE Graphics
	Defining a Clipping Rectangle
	How is Clipping Controlled in PV�WAVE?
	Which PV�WAVE Commands Use Clipping
	Notes on the Keywords and System Variables
	Examples
	OPLOT Default Clipping
	OPLOT with NoClip Keyword
	OPLOT with Clip Keyword
	XYOUTS Default Clipping
	XYOUTS with PClip Keyword
	XYOUTS with Clip Keyword

	Getting Input from the Cursor

	5 - Displaying 3D Data
	Differences Between CONTOUR and CONTOUR2
	When to Use CONTOUR2
	When to Use CONTOUR
	When to Use either CONTOUR or CONTOUR2

	Drawing Contour Plots with the CONTOUR Procedure
	Basic Usage
	Alternative Contouring Algorithms in CONTOUR
	Cell Method
	Follow Method

	Controlling Contour Features with Keywords
	Contouring Example
	Overlaying Images and Contour Plots
	Overlaying on Devices with Scalable Pixels
	Overlaying on Devices with Fixed Pixels
	Method 1
	Method 2

	Labeling Contours
	Smoothing Contours
	Filling Contours with Color

	Drawing a Surface
	Controlling Surface Features with Keywords
	Example of Drawing a Surface

	Drawing Three-dimensional Graphics
	Overview of Homogeneous Coordinates
	PV�WAVE Uses a Right-handed Coordinate System
	Overview of Transformation Matrices
	Translating Data
	Scaling Data
	Rotating Data
	Clipping 3D Plots
	Notes on the Keywords and System Variables for 3D Clipping

	Using the T3D Procedure to Transform Data
	An Example of Transformations Created by SURFACE
	Converting from 3D to 2D Coordinates
	Establishing Your Own 3D Coordinate System
	Example of Data Transformations
	Procedure Used to Draw a House
	Commands that Perform Transformations on the House

	3D Transformations with 2D Procedures
	Combining CONTOUR and SURFACE Procedures
	Even More Complicated Transformations are Possible
	Combining Images with 3D Graphics

	Drawing Shaded Surfaces
	Alternative Shading Methods
	Setting the Shading Parameters
	Sample Shaded Surfaces

	6- Displaying Images
	What is an Image?
	Working with Images

	Image Display Routines: TV and TVSCL
	Image Orientation on the Display Screen
	Image Position on the Display Screen
	Image Size
	Examples

	Image Magnification and Reduction
	Use REBIN for Integral Multiples (or Factors) of Images
	Use CONGRID for Arbitrary Multiples (or Factors) of Images
	The ZOOM Function

	Retrieving Information from Images
	Reading Images from the Display Device
	Examples of How to Use the TVRD Function

	Not All Devices Can Read from the Display
	Using the Cursor with Images: TVCRS

	Using Color with Images
	Color Systems
	Using Color Tables to View Images
	Loading a Different Color Table
	Color Tables for Viewing Images

	Not all Color Images are True-color Images (UNIX/ OpenVMS)
	Pseudo-color Images
	True-color Images

	Displaying Images on Monochrome Devices (UNIX/ OpenVMS)
	Displaying Images on 24-bit Devices (UNIX/OpenVMS)
	Example: Read and Display a 24-bit Image-interleaved Image
	Example: Read and Display a 24-bit Image Stored in Three �Different Files

	Gray Level Transformations
	Thresholding, the Simplest Gray-level Transformation
	Thresholding using Color Table Modification

	Contrast Enhancement
	Using BYTSCL to Enhance Contrast
	Modifying Color Tables to Enhance Contrast

	Histogram Equalization
	Example of Histogram Equalization

	Image Smoothing
	The SMOOTH Function
	Median Smoothing with the MEDIAN Function

	Image Sharpening
	The ROBERTS Function
	The SOBEL Function
	Unsharp Masking Method
	The CONVOL Function

	Frequency Domain Techniques
	Filtering Images
	Displaying the Fourier Spectrum

	Geometric Transformations
	Rotating and Transposing with the ROTATE Function
	Example of ROTATE Function Usage

	Geometric Transformations with the POLY_2D Function
	Efficiency and Accuracy of Interpolation
	Correcting Linear Distortion with Control Points

	Mathematical Morphology

	7 - Rendering Techniques
	Hardware Rendering
	Introduction
	Additional Information
	Demonstration Programs
	Initializing VTK and Managing VTK Windows
	Saving the Contents of VTK Windows
	High-level Interface Routines
	Specifying Color
	Low-level Interface Routines
	vtkCOMMAND
	VTK Dataset Creation

	Simple Examples
	Example 1: Create a Surface Plot
	Example 2: Display a Cube With a Different Color at Each Vertex
	Example 3: Adding an Annotation to a Scene
	Example 4: Debugging VTK

	Software Rendering
	Demonstration Programs
	Demonstration Programs in the Examples Directory
	Ray Tracing Demonstration (Render Directory)
	SLICE_VOL Function and VIEWER Procedure Demonstrations
	Tables of Demonstration Programs

	The Basic Rendering Process
	Importing and Generating Data for Rendering
	Importing Data
	Generating Polygons and Volumes
	Vertex Lists and Polygon Lists
	Rectangular Surfaces
	Spherical Surfaces
	Three-Dimensional Volumes

	Manipulating and Converting Data
	2-, 3-, and 4-dimensional Gridding
	2D Gridding
	3D Gridding
	4D Gridding
	Spherical Gridding

	Polygon Manipulation
	Volume Manipulation
	Coordinate Conversion

	Setting Up Data for Viewing
	Rendering with Standard Techniques
	Polygon Rendering
	Volume Rendering

	Ray-tracing
	Specifying RENDER Objects
	Lighting Model
	Defining Color and Shading
	Diffuse Component
	Transmission Component
	Ambient Component

	Defining Object Material Properties
	Decals

	Setting Object and View Transformations
	Invoking RENDER
	RENDER Examples
	Example 1: Polygonal Mesh (Diffusely-shaded Polygons)
	Program Listing

	Example 2: Polygonal Mesh (Flat-shaded Polygons)
	Program Listing

	Example 3: Polygonal Mesh (Many Polygons)
	Program Listing
	Program Listing

	Example 4: Quadric Animation
	Program Listing
	Program Listing

	Example 5: Slicing a Volume
	Program Listing
	Program Listing

	Example 6: Rendering an Iso-Surface with Voxel Values
	Program Listing
	Program Listing

	Example 7: Diffuse and Partially Transparent Iso-Surfaces
	Program Listing
	Program Listing

	Example 8: Rendering Iso-Surfaces with Transformation Matrices
	Program Listing
	Program Listing

	Displaying Rendered Images

	8 - Working with Date/Time Data
	Introduction to Date/Time Data
	Reading in Your Data
	Converting the Data to the Date/Time Format
	Manipulating the Date/Time Data
	Plotting Your Data

	The Date/Time Structure
	The Julian Field
	The Recalc Field
	Creating Empty Date/Time Variables

	Reading in Your Date/Time Data
	Converting Your Data into Date/Time Data
	The STR_TO_DT Function
	Example 1
	Example 2

	The VAR_TO_DT Function
	Example

	The SEC_TO_DT Function
	Example

	The JUL_TO_DT Function
	Example

	Generating Date/Time Data
	Example 1
	Example 2

	Manipulating Date/Time Data
	Adding to a Date/Time Variable
	Example 1
	Example 2

	Subtracting from a Date/Time Variable
	Example

	Finding Elapsed Time between Two Date/Time Variables
	Example

	Excluding Days from Date/Time Variables
	CREATE_HOLIDAYS Procedure
	Example

	LOAD_HOLIDAYS Procedure
	CREATE_WEEKENDS Procedure
	Example

	LOAD_WEEKENDS Procedure
	Example

	DT_COMPRESS Function

	Creating Plots with Date/Time Data
	Example 1: Plotting Seconds
	Example 2: Plotting Minutes
	Example 3: Plotting Hourly Data
	Example 4: Plotting Daily Sales Data
	Example 5: Plotting Sales Per Week
	Example 6: Plotting Monthly Sales
	Example 7: Plotting Quarterly Sales
	Example 8: Plotting Yearly Sales
	Example 9: Plotting Yearly Sales with the XType Keyword

	Writing Date/Time Data to a File
	Using DC_WRITE Functions
	Using Conversion Routines
	DT_TO_STR Procedure
	Example

	DT_TO_VAR Procedure
	Example

	DT_TO_SEC Function
	Example

	Miscellaneous Date/Time Utility Functions
	The TODAY Function
	Example

	The DAY_NAME Function
	Example

	The DAY_OF_WEEK Function
	Example

	The MONTH_NAME Function
	Example

	The DAY_OF_YEAR Function
	Example

	The DT_PRINT Procedure

	9 - Creating and Querying Tables
	What are the Table Functions?
	Table Functions and Structured Query Language (SQL)
	A Quick Overview of the Table Functions
	Creating a Table
	Example 1: Building a Table
	Using INFO to View the Table Structure
	Only Vectors can be Used in BUILD_TABLE

	Example 2: Building a Different Table with the Same Data
	Example 3: Renaming Columns

	Querying a Table
	Restoring a Sample Table
	The QUERY_TABLE Function
	Rearranging a Table
	Renaming Columns
	Using the Distinct Qualifier

	Summarizing Data with Group By
	Calculation Functions Used with Group By
	Using More than One Calculation Function
	Multiple Groupings

	Sorting Data with Order By
	Sorting in Descending Order

	Subsetting a Table with the Where Clause
	Using Strings in Where Clauses

	Passing Variable Parameters into Table Functions
	Using the In Operator
	Combining Multiple Clauses in a Query
	Example

	Using Date/Time Data in Tables
	Read the Date Data into a Date/Time Variable
	Two Methods of Handling Date/Time Data in Tables
	Method 1: Convert the Date/Time Data to Strings
	Subsetting the Table
	Plotting the Table with a Date/Time Axis

	Method 2: Create a Table that Includes the Date/Time Variable
	Subsetting the Table
	Plotting the Table with a Date/Time Axis

	Formatting and Printing Tables
	Printing the Table without Column Titles
	Printing the Table with Column Titles

	Plotting Table Data
	Tables and Structures
	Returning Indices of a Subsetted Table
	Other Methods of Subsetting and Sorting Variables

	10 - Using Fonts
	Software vs. Hardware Fonts: How to Choose
	Appearance of Text
	3D Transformations
	Text Rotation
	Portability of Text
	Speed of Plotting
	Localized Fonts

	Using Software Fonts
	Software Font Formatting Commands
	Changing Software Fonts

	Using Hardware Fonts
	Hardware Font Formatting Commands
	Using PostScript Formatting Commands
	Additional Text Formatting Commands
	String Resource File for Font Mappings
	Format of the Fontmap String Resource File
	Location of the Fontmap String Resource File
	Using the WAVE_FONTMAP_PATH Environment Variable

	Text Formatting Examples
	Example 1: Basic Text Formatting
	Example 2: Changing the Position of Text
	Example 3: Multiple Fonts within a Single String
	Detailed Discussion

	Example 4: Annotating a Plot

	11- Using Color in Graphics Windows
	Understanding Color Systems
	Color System Overview
	The RGB Color System
	How RGB Color Triples Map into Pixels

	The HSV and HLS Color Systems
	The HLS Color System
	The HSV Color System

	Using Color to Enhance Visual Data Analysis
	Experimenting with Different Color Tables
	Number of Colors in the Color Table Under UNIX/OpenVMS
	Loading a Predefined Color Table: LOADCT
	Loading Your Own Color Tables: TVLCT
	Example — Modifying Color Tables from the Command Line

	Modifying the Color Tables
	Modifying the Predefined Color Tables
	Modifying Color Tables Using Widget-based Utility Tools
	Shifting the Color Table to the Left or Right
	Shifting Colors from the PV�WAVE Prompt
	Shifting Colors Using the Utility Widget WgCbarTool

	Smoothing the Color Transitions in a Color Table
	Stretching the Color Table
	Stretching Colors from the PV�WAVE Prompt
	Stretching Colors Using the Utility Widget WgCtTool

	Retrieving Information About the Current Color Table

	Controlling Plot Colors
	Default Plot Colors
	Determining the Number of Available Plot Colors
	Example — Creating a Simple Color Table to Control Plot Colors
	Using the TEK_COLOR Command to Control Plot Colors
	Example

	Specifying Plot Colors on a 24-bit Display (UNIX/OpenVMS)

	Device-specific Methods for Using Color
	Color Tables — Switching Between Devices
	Combining Colors to Create Special Effects

	Summary of Color Table Procedures
	Basic Color Table Procedures
	Interactive Color Table Procedures
	Interactive (Wave Widgets) Color Table Procedures

	Interactive (Generic) Color Table Procedures

	12 - Mapping with PV-WAVE
	Introduction
	Using Map Projections and Datasets
	What Are Map Projections?
	Types of Projections
	Map Projections Available in PV�WAVE
	What Are Map Datasets?
	The World Databank II Dataset
	The USGS Digital Line Graph Dataset
	The USGS Name Database

	Reading Other Map Datasets Into PV-WAVE

	Creating and Customizing Maps
	Plotting a World Map
	Specifying a Map Projection
	Subsetting the Map Dataset
	Selecting Map Attributes

	Specifying the Map Limits
	Using Range Keyword
	Using Zoom and Center

	Plotting Great Circles, Straight Lines, and Text
	Drawing Great Circles
	Drawing Arbitrary Straight Lines
	Calculating Distances
	Adding Text to Maps
	Example

	Adding an Image Under the Map
	Adding Contour Lines
	Adding Vector Lines
	Creating Filled Maps

	How to Optimize Your Mapping Application
	Subsetting Data with MAP Procedure Keywords
	Subsetting with the Select Keyword
	Subsetting with Range, Zoom, and Center Keywords
	Subsetting with the Resolution Keyword

	Use File_Path and Read_Path Keywords to Avoid Re-reading Data
	Creating a Basemap Image
	Optimized Data Reading

	Accessing Other Map Datasets
	Writing a Procedure to Read a Map Dataset
	Example Programs Are Provided

	Defining Your Own Projections
	Example

	Creating Interactive Map Applications

	13 - PV WAVE on the World Wide Web
	Standard Library Web-Enabling Routines
	PV-WAVE as a Helper Application
	Using PV-WAVE Remotely with CGI

	Index

